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9 Predictive Analytics for Data Mining 31

1 Introducton

Before going into the data analysis, try to visualize it to have a first impression.
Difference between machine learning and statistical learning:

• Machine learning has a greater emphasis on large scale applications and prediction accuracy.

• Statistical learning emphasizes models and their interpretability, and precision and uncertainty.

The supervised learning problem:

• Outcome meansure Y also called dependent variable, reponse, target.

• Vector of p predictor measurements X also called inputs, regressors, covariates, features, indepen-
dent variables.

• In the regression problem, Y is quantitative (e.g. price, blood pressure).

• In the classification problem, Y takes values in a finite, unordered set.

• We have training data. These are observations of these measurements.

On the basis of the training data we would like to

• Accurately predict unseen test cases.

• Understand which inputs affect the outcome and how

• Assess the quality of our predictions and inferences.

To apply supervised learning, one has to understand the simple methods first, in order to grasp the more
sophsiticated ones. It is important to accurately assess the performance of a method, to know how well
or how badly it is working.

In unsupervised learning,

• No output/dependent variable (response), just a set of predictors (features) measured on a set of
samples.

• objective is more fuzzy — find groups of samples that behave similarly, find features that behave
similarly, find linear combinations of features with the most variation.

• difficult to evaluate the method.

• can be used as a pre-processing step for supervised learning.

We denote the input vector as

X =

X1

X2

X3

 ,

where X refers to the variable and x denotes as the instance, and we usually take column vectors.
The ideal f (x) = E(Y |X = x) is called the regression function.
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• The regression function f̂ (x) is the ideal or optimal predictor of Y with regard to mean-squared
predictor of Y with regard to mean-squared prediction error: f (x) = E(Y |X = x) is the function
taht minimize E[(Y −g(X))2|X = x] over all functions g at all points X = x.

• We also have ε = Y − f (x) as the irreducible error.

• For any estimate f̂ (x) of f (x), we have

E[(Y − f̂ (X))2|X = x] = [ f (x)− f̂ (x)]2 +Var(ε).

• We relax the definition and let
f̂ (x) = Ave(Y |X ∈ N(x)),

where N(x) is some neighborhood of x.

• Nearest neighbor average can be pretty good for small number of components p, i.e. p ≤ 4 and
large N.

• Nearest neighbors tend to far away in high dimensions. (Curse of dimensionality). Note the curve
about the curse of dimensionality. NN is to have the average estimate whose variance is 10%
lower than the original data. A 10% neighborhood in high dimensions need no longer be local, so
we cannot estimate E(Y |X = x) by local averaging.

Some trade-offs:

• Prediction accuracy versus interpretability

• Good fit versus over-fit or under-fit

• Parsimony versus black-box

Figure 1: Interpretability vs flexibility.

We also have the Bias-Variance Trade-Off: The expected test MSE is

E(y0− f̂ (x0))
2 = Var( f̂ (x0))+ [Bias( f̂ (x0))]

2 +Var(ε).

• The variance of a statistical learning method refers to the amount by which f̂ would change if
we estimated it using a different training dataset. In general, more flexible methods have higher
variance.
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• The Bias refers to the error that is introduced by approximating a real-life problem, which may be
extremely complicated, by a much simpler model.

• As a general rule, as we use more flexible methods, the variance will increase and the bias will
decrease. The relative rate of change of these two quantities determines whether the test MSE
increases or decreases.

For classification, the Bayes optimal classifier at x is

C(x) = j if p j(x) = max{p1(x), p2(x), . . . , pK(x)},

where the conditional class probabilities at x is

pk(x) = Pr(Y = k|X = x),k = 1,2, . . . ,K.

• The performance of Ĉ(x) using the misclassification error rate is:

ErrTe = Ave
i∈Te

I[yi 6= Ĉ(xi)].

For K-nearest neighbor, increasing K will reduce the training error continuously, but test error first drops
and then rises.

2 Linear Regression

Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on
X1,X2, . . . ,X p is linear.
We assume a model

Y = β0 +β1X + ε,

where β0 and β1 are two unknown constants that represent the intercept and slope, also known as coeffi-
cients or parameters, and ε is the error term. Given some estiamtes β̂0 and β̂1 for the model coefficients,
we have the prediction

ŷ = β̂0 + β̂1x,

where ŷ indicates a prediction of Y on the basis of X = x.
Estimation of the parameters by least squares

• We define ei = yi− ŷi as the ith residual, Then the residual sum of squares (RSS) is defined as

(RSS) = e2
1 + e2

2 + · · ·+ e2
n,

= (y1− β̂0− β̂1x1)
2 +(y2− β̂0− β̂1x2)

2 + · · ·+(yn− β̂0− β̂1xn)
2.

• The least squares approach chooses β̂0 and β̂1 to minimize the RSS. The minimizing values are

β̂0 = ȳ− β̂1x̄,

β̂1 =
∑

n
i=1(xi− x̄)(yi− ȳ)

∑
n
i=1(xi− x̄)2 ,

where ȳ = 1
n ∑

n
i=1 yi and x̄ = 1

n ∑
n
i=1 xi are the sample means.

We could also write the estimation of β1 in matrix form as follows.

β̂1 =
Cxy

Cxx
= ρ ·

√
Cyy√
Cxx

,

where we denote the corrlation matrix as ρ =
Cxy√

Cxx·
√

Cyy
. The cross-covariance matrix Cxy = X(I−

1
N ee>)Y>.
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2.1 Assessing the accuracy of the coefficient estimates

Suppose we have random sample x1,x2, . . . ,xn. The standard error of the mean (SEM) is the standard
deviation of the sample-mean’s estimate of a population mean.

SEx̄ =
s√
n

where s is the sample standard deviation and n is the number of observations of the sample.
This estimate can be cmopared with the formula for the true standard deviation of the sample mean as
T/n as T = (x1,x2, . . . ,xn):

SDx̄ =
σ√
n
.

The standard errors associated with β̂0 and β̂1 are

SE(β̂1)
2 =

σ2

∑
n
i=1(xi− x̄)2

SE(β̂0)
2 = σ

2[
1
n
+

x̄2

∑
n
i=1(xi− x̄)2 ]

Confidence interval:
A 95% confidence interval is defined as a range of values such that 95% probability, the range will
contain the true unknown value of the parameter, i.e. β̂1±2 ·SE(β̂1). This is a frequentist idea.
Standard errors can also be used to perform hypothesis tests on the coefficients.

• To test the null hypothesis, we compute a t-statistic, given by

t =
β̂1−0

SE(β̂1)
,

It measures the number of standard deviations that β1 is away from 0.

• This will have a t-distribution with n−2 degrees of freedom, assuming β1 = 0.

• Using statistical tools, we can compute the probability of observing any value equal to |t| or larger.
We call this probability the p-value.

• We interpret the p-value as follows: with a small p-value we can infer there is an association
between the predictor and the response.

Degree of freedom:

• In statistics, the number of degrees of freedom is the number of values in the final calculation of a
statistic that are free to vary. It is the number of independent observations in a sample of data that
are available to estimate a parameter of the population from which that sample is drawn.

• In general, the degrees of freedom of an estimate of a parameter are equal to the number of
independent scores that go into the estimate minus the number of parameters used as intermediate
steps in the estimation of the parameter itself, e.g. the sample variance has N-1 degrees of freedom,
since it is computed from N random scores minus the only 1 parameter estimated as intermediate
step, which is the sample mean.

Assessing the overal accuracy of the model
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• We comptue the Residual Standard Error

RSE =

√
1

n−2
RSS =

√
1

n−2

n

∑
i=1

(yi− ŷi)2,

where the residual sum-of-squares is RSS = ∑
n
i=1(yi− ŷi)

2.

• R-squared or fraction of variance explained is

R2 =
TSS−RSS

TSS
= 1− RSS

TSS
.

where TSS = ∑
n
i=1(yi− ȳi)

2 is the total sum of squares (TSS).
R2 is easier to interprete than RSE as it is between 0 and 1, but sometimes hard to determine what
is a good R2 value.

• The R2 statistic is the correlation between the two variables and measures how closely the input
variable and the output variable are related. The p value and t statistic merely measure how strong
is the evidence that there is a nonzero association. Even a weak effect can be extremely significant
given enough data.

Multiple Linear Regression:
It refers to regression models wth more than one predictor.

• Model: Y = β0 +β1X1 +β2X2 +β3X3

• we interpret β j as the average effect on Y of a one unit increase in X j, holding all other predictors
fixed.

Interpreting regression coefficients

• The ideal scenario is when the predictors are uncorrelated:

– Each coefficient can be estimated and tested separately
– We can have the response depend on one predictors, with others fixed.

• The variance of all coefficients tends to increase, sometimes dramatically

• Interpretations become hazadous

• Claims of causality should be avoided for observational data.

Estimation and Prediction for Multiple Regression

• Given estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp

• The sum of squared residuals is

RSS =
n

∑
i=1

(yi− ŷi)
2 (1)

=
n

∑
i=1

(yi− β̂0− β̂1xi1− β̂2xi2−·· ·− β̂pxip)
2. (2)

The values β̂0, β̂1, . . . , β̂p minimize RSS are the multiple least squares regression coefficient esti-
mates.
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We define F-statistics

F =
(TSS−RSS/p)
RSS/(n− p−1)

∼ Fp,n−p−1.

• If F-statistics is far larger than 1, it shows it is against the null hypothesis H0.

• If F-statistic is significant, then we have extremely strong evidence that at least one of the predic-
tors is associated with response.

• If n is large, an F-statistic that is just a little larger than 1 might still provide evidence against H0,
and vice versa.

• When H0 is true and the errors εi have a normal distribution, the F-statistic follows an F-distribution.

• We can compute p-value from the F-statistic. And we can determine whether or not to reject H0
based on the p-value.

• There is a high chance to incorrectly conclude there is an association between the variable and
the responce based on the individual t-statistics and associated p-values. The F-statistic does not
suffer from this problem because it adjusts for the number of predictors.

• If p > n then there are more coefficients β j to estimate than observations from which to estimate
them. We cannot fit the multiple linear regression model using least squares, so F-statistics cannot
be used.

Deciding on the important variables

• Forward selection: begin with the null model and add p simple linear regressions that reults in the
lowest RSS, until a stopping criterion is met.

• Backward selection: start with all variables in the model. Remove the one with the largest p-value
iteratively, until a stopping criterion is met.

Qualitative Predictors

• They are discrete set of values.

• Also called categorical predictors or factor variables.

Removing the additive assumption: interactions and nonlinearity.

• One input variable can influence another variable.

• We can use the multiplication of the interacted variables to check the p-value of coefficent. It
p-value is low, it indicates a strong interaction.

Polynomial regression is the linear regression with non-linear regression functions.
The hierarchy principle: If we include an interaction in a model, we should also include the main effects,
even if the p-values assocated with their coefficients are not significant.
We can also have linear coefficients but non-linear functions of variable.
Outliers
Non-constant variance of error terms
High leverage points
Collinearity
Statistical variability
Scatter plot and box plot are two most common data visualization methods. For box plot

7



• The bottom and top of the box are always the first and third quartiles, and the band inside the box
is always the second quartile (the median).

• The very bottom and top line are the hinges, which are the ranges.

3 Classification

We can use Linear Regression for binary classification problems, which is equivalent to linear discrim-
inant analysis. E(Y |X = x) = Pr(Y = 1|X = x). But for multiclass problems, we cannot use linear
regression.

3.1 Logistic Regression:

We have p(X) = Pr(Y = 1|X) and it has the form

p(X) =
eβ0+β1X

1+ eβ0+β1X

p(X) ∈ [0,1].
We also have the log odds or logit transformation of p(X) as

log(
p(X)

1− p(X)
) = β0 +β1X .

We use maximium likelihood to estimate the parameters.

`(β0,β) = ∏
i:yi=1

p(xi) ∏
i:yi=0

(1− p(xi)).

The likelihood gives the probabilitiy of the observed zeros and oens in the data. We pick β0 and β1 to
maximize the likelihood of the observed data.
Logistic regression with several variables

log(
p(X)

1− p(X)
) = β0 +β1X1 + · · ·+βpXp

p(X) =
eβ0+β1X1+···+βpXp

1+ eβ0+β1X1+···+βpXp
.

Confounding
Scatter plot: a type of mathematical diagram using Cartesian coordinates to display values for typically
two variables for a set of data. If the points are color-coded you can increase the number of displayed
variables to three.
Tilde in R:
The thing on the right of ← is a formula object. It is often used to denote a statistical model, where
the thing on the left of the ∼ is the response and the things on the right of the ∼ are the explanatory
variables. So in English you’d say something like “Species depends on Sepal Length, Sepal Width, Petal
Length and Petal Width”.
Data Frame: The concept of a data frame comes from the world of statistical software used in empirical
research; it generally refers to “tabular” data: a data structure representing cases (rows), each of which
consists of a number of observations or measurements (columns). Alternatively, each row may be treated
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as a single observation of multiple “variables”. In any case, each row and each column has the same
data type, but the row (“record”) datatype may be heterogenous (a tuple of different types), while the
column datatype must be homogenous. Data frames usually contain some metadata in addition to data;
for example, column and row names.
Case-control sampling and logistic regression

• With case-control samples, we can estimate the regression parameters β j accurately if our model
is correct, the constant term β0 is incorrect.

• We can correct the estimated intercept by a simple transformation

β̂
∗
0 = β̂0 + log

π

1−π
− log

π̃

1− π̃
,

where π is the true probability and π̃ is the case probability.

• Often cases are rare and we take them all; up to five times that number of controls is sufficient.

• Case/Control sampling is most effective when the prior probabilities of the classes are very un-
equal. We expect this to be the case for the cancer and spam problems, but not the gender problem.

Logistic regression with more than two classes

• One version used in R package glmnet (Softmax function). It has the symmetric from

Pr(Y = k|X) =
eβ0k+β1kX1+···+βpkXp

∑
K
`=1 eβ0`+β1`X1+···+βp`Xp

,

where K is the number of classes, and K > 2. Each class has a linear function, and we weight
against each other using an exponential function.

• It is also referred to as multinomial regression.

3.2 Discriminant Analysis

• It models the distribution of X in each of the classes separately, and then use Bayes theorem to flip
things around and obtain Pr(Y |X).

• When we use normal distributions for each class, it leads to linear or quadratic discriminant anal-
ysis.

• It is quite generic, and applies to other distributions as well.

Bayes theorem for classification From the Bayes theorem,

Pr(Y = k|X = x) =
Pr(X = x|Y = k) ·Pr(Y = k)

Pr(X = x)
,

Or

P(Y | X) =
P(X | Y )

∑i P(X | Yi)P(Yi)
·P(Y )

we can write the discriminant analysis as

Pr(Y = k|X = x) =
πk fk(x)

∑
K
l=1 πl fl(x)

,

where fk(x) = Pr(X = x|Y = k) is the density for X in class k, and we use normal densities separately
for each class. πk = Pr(Y = k) is the marginal or prior probability for class k.
Comparison between Logistic Regression and Discriminant Analysis
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• When the classes are well-separated, the parameter estimates for the logistic regression model are
unstable. Linear Disciminant Analysis (LDA) does not suffer from this problem.

• If n is small and the distribution of the predictors X is approximately normal in each of the classes,
LDA is more stable.

• LDA is popular when we have more than two classes, because is also provides low-dimensional
views of the data.

Linear Discriminant Analysis when p = 1

fk(x)∼N (µk, σ
2
k),

where µk and σ2
k are the mean and variance of class k respectively, and we assume all σk = σ are the

same.
We can plug in the former equation into the bayes formula. and perform some cancellation and simpli-
fication. To classify X = x, we need to find the largest pk(x). Taking logs, and discarding terms that
do not depend on k, we see that it is equivalent to assigning x to the class with the largest discriminant
score:

δk(x) = x · µk

σ2 −
µ2

k
σ2 + log(πk).

δk(x) is a linear function of x. Parameter estimation

π̂k =
nk

n
(3)

µ̂k =
1
nk

∑
i:yi=k

xk (4)

σ̂
2 =

1
n−K

K

∑
k=1

∑
i:yi=k

(xi− µ̂k)
2 (5)

=
K

∑
k=1

nk−1
n−K

· σ̂2
k . (6)

where σ̂2
k =

1
nk−1 ∑i:yi=k(xi− µ̂k)

2 is the usual formula for the estimated variance in the kth class.
Linear Discriminant Analysis when p > 1
Density:

f (x) =
1

(2π)p/2|Σ|1/2 e−
1
2 (x−µ)>Σ−1(x−µ).

Discriminant function:
δk(x) = x>Σ

−1µk−
1
2

µT
k Σ
−1µk + logπk.

but it remains linear.
Fisher’s Disciminant Plot:
When there are K classes, linear discriminant analysis can be viewed in a K− 1 dimensional plot. It
classifies to the closest centroid, and they span a K−1 dimensional plane.
Probabilisitic interpretation
Once we have estimates δ̂k(x), we can turn these functions into estimates for class probabilities:

P̂r(Y = k|X = x) =
eδ̂k(x)

∑
K
l=1 eδ̂l(x)

.
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The ROC curve shows true positive rate and false positive rate simultaneously. The curve traces out
when changing the threshold. We also use the AUC or area under the curve to compare the performance
between classifiers with different thresholds. Higher AUC is good.
Other forms of Discriminant Analysis

Pr(Y = k|X = x) =
πk fk(x)

∑
K
l=1 πl fl(x)

When fk(x) are Gaussian densities, with the same covariance matrix Σ in each class, it leads to LDA. By
altering the forms for fk(x), we get different classifiers as

• With Gaussians but different Σk in each class, we get quadratic discriminant analysis.

• With fk(x) = ∏
p
j=1 f jk(x j) (conditional independence model) in each class we get naive Bayes.

For Gaussian this means the Σk are diagonal.

• Many other forms, by proposing specific density models for fk(x), including nonparametric ap-
proaches.

Quadratic Discriminant Analysis

δk(x) =−
1
2
(x−µk)

>
Σ
−1
k (x−µk)+ logπk−

1
2

log |Σk|

The quandratic terms matter as Σk are different.
Naive Bayes
Assume features are independent in each class. NB is Useful when p is large, and multiviariate methods
like QDA and even LDA break down due to large covariance matrices.

• Gaussian naive Baye assumes each Σk is diagonal:

δk(x)∼ log
[

πk

p

∏
j=1

fi j(x j)

]
(7)

=−1
2

p

∑
j=1

[
(x j−µk j)

2

σ2
k j

+ logσ
2
k j

]
+ logπk. (8)

• can use for mixed feature vectors (qualitative and quantitative). If X j is qualitative, replace fk j(X j)
with probability mass function (histogram) over discrete categories.

Compare Logistic Regression and LDA
For a two-class problem, one can show for LDA

log
(

p1(x)
1− p1(x)

)
= log

(
p1(x)
p2(x)

)
= c0 + c1x1 + · · ·+ cpxp.

It has the same form as logistic regression. The difference is in how the parameters are estimated.

• Logistic regression uses the conditional likelihood based on Pr(Y |X), known as discriminative
learning.

• LDA uses the full likelihood based on Pr(X ,Y ), known as generative learning.

• Despite these differences, in practice the results are often very similar.
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4 Resampling

Validation method: We split the original training set into a train and validation set. Then, we fit models
of various set sizes and of various model sizes. Our job is to find k̂, and return the model Mk̂.

• two major methods: cross validation and the bootstrap

• Resampling refits a model of interest to samples formed from the training set, in order to obtain
addtional information about the fitted model.

• They provide estimates of test set prediction error, and the standard deviation and bias of our
parameter estimates.

Drawbacks of validation set approach

• the validation estimate of the test error can be highly variable, depending on precisely which
observations are included in the training set and which observations are included in the validation
set

• Only a subset of the observation are used for training

• The validation set error may tend to overestimate the test error for the model fit on the entire
dataset.

K-fold cross validation

• random divides the data into K equal-size parts. We leave out. We leave out part k, fit the model
to the other K−1 parts (combined), and then obtain predictions for the left-out kth part.

• Let the K parts be C1,C2, . . .CK where Ck denotes the indices of the observations in part k. There
are nk observations in part k: if N is a multiple of K, then nk = n/K.

• Computer

CV(K) =
K

∑
k=1

nk

n
MSEk,

where MSEk ∑i∈Ck
(yi− ŷi)

2/nk and ŷi is the fit for observation i, obtained from the data with part
k removed.

• Setting K = n yield n-fold or leave-one out cross validation.

Leave-one-out cross validation

• With least squares linear or polynomial regression, an amazing shortcut maeks the cost of leave-
one out cross validation the same as that of a single model fit.

CV(n) =
1
n

n

∑
i=1

(
yi− ŷi

1−hi

)2

.

where ŷi is the ithe fitted value from the original least squares fit, and hi is the leverage. It is like
the ordinary MSR, except the ithe residual is divided by 1−hi.

• It does not shake up the data enough. The estimates from each fold are highly correlated and
hence their average can have high variance.

• K = 5,10 is a better choice.
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Problems with Cross validation

• Since each training set is only (K − 1)/K as big as the original training set, the estimates of
prediction error will typically be biased upward.

• The biase is minimized when K = n (leave one out), the estimae has high variance.

• K = 5or10 provides a better compromise.

Cross Validation for Classification

• Compute

CVK =
K

∑
k=1

nk

n
Errk

where Errk = ∑i∈Ck
I(yi 6= ŷi)/nk.

• The estimated standard deviation of CVk is

ŜE(CVk) =

√
K

∑
k=1

Errk− ¯Errk
2
/(K−1).

Cross validation: right and wrong

• If we pre-select the predictors correlated to the class labels, we should not ignore this fact when
applying cross validation. The procedure has already seen the labels of the training data and made
use of them. It is a form of training and should be included in the validation process.

• The right way is to apply screening and validation at each round of cross validation.

The bootstrap

• For real data, we cannot generate new samples from the original population.

• Bootstrap allows to use computer to mimic the processing of obtaining new data sets, so that we
can estimate the variability of our estimate without generating additonal samples.

• Rather than repeatedly obtaining independent datasets from the population, we obtain distinct
datasets by repeatedly sampling obserations from the original dataset with replacement.

• The procedure is repeated B times for some large value of B, in order to produce B different
bootstrap datasets, Z∗1,Z∗2, . . .Z∗B and B corresponding α estimates, α̂∗1, α̂∗2 . . . α̂∗B.

• We estimate the standard error of these bootstrap estimates using the formula

SEB(α̂) =

√
1

B−1

B

∑
r=1

(α̂∗r− ¯̂α∗)2

• In time series data, where data is not iid., we cannot bootstrap the data with replacement, but we
can apply block boostrap.

• Primarily used to obtain standard erros of an estimate

• also provides approximate confidence intervals for a population parameter, which represents an
approximate 90% confidence intervial for the true α.
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Figure 2: Sampling and resampling.

• The above interval is called a Bootstrap Percentile confidence interval. It is the simplest method
for obtain a confidence interval from the bootstrap.

Compare Bootstrap and Cross Validation

• In CV, there is no overlap

• To estimate prediction error using the bootstrap, we could think about using each bootstrap dataset
as our training sample, and the original samples as our validation set.

• But each bootstrap sample has significant overlap with the original data. About two-thirds of the
original data points appear in each bootstrap sample.

5 Linear Model Selection and Regularization

5.1 Subset selection

The reason to alternate Least Square methods

• Prediction Accuracy: when p > n,, to control the variance.

• Model Interpretability: By setting the corresponding coefficient estimates to zero — we can obtain
a model that is more easily interpreted. Feature selection.

Three major classes of methods

• Subset Selection: We identify a subset of the p predictors that we believe to be related to the
response. We then fit the model using least squares on the reduced set of variables.

• Shrinkage:: We fit a model involving all p preditors, but the estimated coefficients are shrunken
towards zero relative to the least squares estimates. The shrinkage aka regularization has the effect
of reducing variance and can perform variable selection.

• Dimension Reduction. We project the p predictors into a M-dimensinoal subspace, where M < p.
This is achieved by computing M different linear combinations, or projections of the variables.
Then these M projections are used predictors to fit a linear regression model by least square.
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Best Subset Selection

1. Let M0 denote the null model, which contain no predictors. This model simply predicts the sample
mean for each observation.

2. For K = 1,2, . . . p:

(a) Fit all
(p

k

)
models that contain exactly k predictors.

(b) Pick the best among these
(p

k

)
models, and call it Mk. Choose the best model having the

smallest RSS, or largest R2.

3. Select a single best frmo among M0,M1, . . . ,Mp using cross-validated prediction error, Cp (AIC),
(BIC), or adjusted R2.

Subset Selection applies to many methods, including least square regression, logistic regression, and
so on. The deviance— negative two times the maximized log-likelihood—plays the role of RSS for a
broader class of models.
Stepwise Selection

• Best subset selection does not apply with very large p. It leads to a large search space, and
overfitting. And the complexity is O(2p).

• Forward stepwise selection begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.

• at each step the variable that gives the greatest additional improvement to the fit is added to the
model.

• Complexity: O(p2)

The other around is Backward Stepwise Selection.

• It searches through 1+ p(p+1)/2 models, same as forward subset selection.

• Backward selection requires the number of sample n larger than the number of variables p, so that
the full model can be fit. But forward does not have the requirement.

5.2 Some criterions

Cp, AIC, BIC and adjusted R2

• They adjust the training error for the model size, and can be used to select among a set of models
with different number of variables.

• Mallow’s Cp

Cp =
1
n
(RSS+2dσ̂

2),

where d is the total number of parameters used and ˆsigma2 is an estimate of the variance of the
error ε associated with each response measurement. And n > p.

• The AIC criterion is defined for a large class of models fit by maximum likelihood:

AIC =−2logL+2 ·d,

where L is the maximized value of the likelihood function for the estimated model.
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• In the case of the linear model with Gaussian errors, maximium likelihood and least squares are
the equivalent.

−2logL = RSS/σ̂
2

Bayesian Information Criterion (BIC)

• BIC = 1
n(RSS+ log(n)dσ̂2).

• Like Cp, the BIC will tend to take on a small value for a model with a low test error, and so
generally we select the model that has the lowest BIC value.

• BIC replaces the 2dσ̂2 used by Cp with a log(n)dσ̂2 term, where n is the number of observations.

• Since logn > 2 for any n > 7, the BIC statistics generally places a heavier penalty on models with
many variables, and hence results in the slection of smaller models than Cp.

Adjusted R2

• For a least squares model with d variables, the adjusted R2 statistic is calculated as

Adjusted R2 = 1− RSS/(n−d−1)
TSS/(n−1)

.

where TSS is the total sum of squares.

• Unlike Cp, AIC, and BIC, for which a small value indicates a model with a low test error, a large
value of adjusted R2 indicateds a model with a small test error.

• Maximizing the adjusted R2 is equivalent to minimizing RSS/(n− d− 1). While RSS always
decreases as the number of variables in the model inceases, RSS/(n− d− 1) may increase or
decrease, due to the presence of d in the denominator.

• unlike the R2 statistic, the adjusted R2 statstic pays a price for the inclusion of unnecessary vari-
ables in the model.

Validation and Cross-Validation

• The procedure has an adavantage over AIC, BIC, Cp and adjusted R2, in that it provides a direct
estimate of the test error, and does not require an estimate of the error variance σ2.

• It can also be used in a wider range of model selection tasks, even in cases where it is hard to
pinpoint the model degrees of freedom (the number of predictors in the model) or hard to estimate
the error variance σ2.

One-standard-error rule: We first calculate the standard error of the estimated test MSE for each model
size, and the select the smallest model for which the estimated test error is within oen standard error of
the lowest point on the curve.
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5.3 Shrinkage Methods

Ridge regression and Lasso

• The subset selection methods use least squares to fit a linear model that contains a subset of
predictors.

• Alternatively, we can fit a model containing all p predictors using a technique that constrains and
regularizes the coefficient estimates, or shrinks the coefficient estimates towards zero.

• It may not be immediately obvious why such as contraint should improve the fit, but it turns out
that shrinking the coefficient estimates can significantly reduce their variance.

Ridge Regression
n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

+λ

p

∑
j=1

β
2
j = RSS+λ

p

∑
j=1

β
2
j ,

where λ≥ 0 is a tuning parameter, to be determined separately.

• As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making
the RSS small.

• However, the second term λ∑ j β2
j called a shrinkage penalty, is small when β1, . . . ,βp are close to

zero, and so it has the effect of shrinking the estimates of β j towards zero.

• The tuning parameter λ serves to control the relative impact of these two terms on the rgerssion
coefficient estimates.

• Selecting a good value for λ is ciritical, cross validation is used for this.

Ridge Regression: scaling of predictors

• The standard least squares coefficient estimates are scale equivariant: multiplying X j by a constant
c simply leads to a scaling of the least squares coefficient estimates by a factor of 1/c. In other
words, regardless of how the jth predictor is scaled, X jβ̂ j will remain the same.

• In contrast, the ridge regression coefficient estimates can change substantially when multiplying
a given predictor by a constant, due to the sum of squared coefficients term in the penalty part of
the ridge regression objective function.

• It is best to apply ridge regression after standardizing the predictors, using the formula

x̃i j =
xi j

1
n ∑

n
i=1(xi j− x̄ j)2

One disadvantage of Ridge Regression is instead of involving a subset of variables in subset selection,
ridge regression will include all p predictors in the final model.
The Lasso is a relatively new alternative to ridge regression that overcomes the disadvantage. The lasso
coefficients, β̂L

λ
minimize the quantity

n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)
+λ

p

∑
j=1
|β j|= RSS+λ

p

∑
j=1
|β j|.

In statistical parlance, the lasso uses an `1 penalty instead of an `2 penalty. The `1 norm of a coefficient
vector β is given by ‖β‖1 = ∑ |β j|.
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• As with ridge regression, the lasso shrinks the coefficients estimates towards zero.

• In the case of lasso, the `1 penalty has the effect of forcing some of the coefficient estimates to be
exactly equal to zero when the tuning paramter λ is suffciently large.

• Much like best subset selection, the lass performs variable selection.

• We say that the lasso yields sparse models — that is models that involve only a subset of the
variables.

• As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation is the
method of choice.

Figure 3: Lasso shrinks several variables towards zero.

We can see from the graph that by increasing λ, we can shrink some variables to exactly zero.
The Variable Selection Property of the Lasso
Why is it that the lasso, unlike ridge regressio, results in coefficent estimates that are exactly equal to
zero? It is equivalent to say the lasso and ridge regression coefficient estimates solve the problems

min
β

n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

(9)

subject to
p

∑
j=1
|β j| ≤ s. (10)

and

min
β

n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

(11)

subject to
p

∑
j=1

β
2
j ≤ s. (12)

Selecting the tuning parameter for ridge regression and lasso using cross validation
We choose a grid of λ values, and compute the cross validation error rate for each value of λ. We
then select the tuning parameter avlue for which the cross validation error is the smallest. d ≤ p but is
unknown, so BIC, AIC and adjusted R2 cannot be used.
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Figure 4: The lasso solution reaches the corner, which gives the sparsity.

5.4 Dimension Reduction Methods

• Let Z1,Z2, . . . ,ZM represent M < p linear combinations of our original p predictors. That is

Zm =
p

∑
j=1

φm jX j

for some constants φm1, . . . ,φmp.

• We can then fit the linear regression model

yi = θ0 +
M

∑
m=1

θmzim + εi, i = 1, . . . ,n

using ordinary least squares.

• Note that in the second mode, the regression coefficients are given by θ0,θ1, . . . ,θM. If the con-
stants φm1, . . . ,φmp are chosen wisely, the dimension reduction approaches can often outperform
OLS regression.

• We do the transform as

M

∑
m=1

θmzim =
M

∑
m=1

θm

p

∑
j=1

φm jxi j =
p

∑
j=1

M

∑
m=1

θmφm jxi j =
p

∑
j=1

β jxi j

where

β j =
M

∑
m=1

θmφm j.

• Dimension reduction serves to constrain the estimated coefficients, since now th ey must take the
form as above.

Principal Component Regression

• PCR identifies linear combations or direction that best represent the predictors X1, . . . ,Xp.
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• These directions are identifies in an unsupervised way, since the response Y is not used to help
determine th e principal component directions.

• The response does not supervise the identification of the principal component.

• There is no guarantee that the directions represent the predictors are the bes t directions for pre-
dicting the response.

Partial Least Squares (PLS)

• Unlike PCR, PLS identifies the new features in a supervised manner — it makes use of the re-
sponse Y in order to identify new featuers that not only approximate the old features well, but are
related to the response.

• Rougthly speaking, the PLS approach attempts to find directions that help explain both the re-
sponse and the predictors.

PLS

• After standardizing the p predictors, PLS computes the first direction Z by setting each φ1 j equal
to the coefficient from the simple linear regression of Y onto X j.

• One can show this coefficient is proportional to the correlation between Y and X j.

• In computing Z1 = ∑
p
j=1 φ1 jX j, PLS places the highest weight on the variables that are most

strongly related to the response.

• Subsequent directions are found by taking residuals and then repeating the above prescription.

Polynomial Regression

•
yi = β0 +β1xi +β2x2

i +β3x3
i + · · ·+β3xd

i + εi

• We look into the fitted function values at any value x0:

f̂ (x0) = β̂0 + β̂1x0 + β̂2x2
0 + · · ·+ β̂kxk

0

• Since f̂ (x0) is a linear function of the β̂`, we can get simple expression for pointwise-variances
Var[ f̂ (x0)] at any value x0.

• We either fix the degree d at some reasonble low value, or use cross validation.

• Nonlinear Logistic Regression

P(Y > 250|X = xi) =
exp(β0 +β1xi +β2x2

i + · · ·+βdxd
i )

1+ exp(β0 +β1xi +β2x2
i + · · ·+βdxd

i )

• To get confidence intervals, compute upper and lower bounds on the logit scale, and then invert to
get on probabiility scale.

• Can do separately on several variables — just stack the variables into one matrix, and separate out
the pieces afterwards

• Caveat: polynomials have notrious tail behavior – very bad for extrapolation.
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Step Functions
Another way of creating transformations of a variable — cut the variable into distinct regions. It is a
local model. It is easy to work with, which creates a series of dummy variables representing each group.
Piecewise Polynomials

• Instead of a single polynomial in X over its whole domain, we can rather use different polynomials
in regions defined by knots.

yi =

{
β01 +β11xi +β21x2

i +β31x3
i + εi if xi < c;

β02 +β12xi +β22x2
i +β32x3

i + εi if xi < c;

• Better to add constraints to the polynomials, e.g. continuity

• Splines have the “maximum” amount of continuity

5.5 Nonline methods

Linear Splines
A linear spline with knots at εk,k = 1, . . . ,K is a piecewise linear polynomial continuous at each knot.
We can represent this model as

yi = β0 +β1b1(xi)+β2b2(xi)+ · · ·+βK+3bK+3(xi)+ εi,

where the bk are basis functions.

b1(xi) = xi (13)

bk+1(xi) = (xi−ξk)+, k = 1, . . . ,K (14)

Here the ()+ means positive part, i.e.

(xi−ξk)+ =

{
xi−ξk if xi > ξk;
0 otherwise

Cubic Splines A cubic spline with knots at ξk, k = 1, . . . ,K is piecewise cubic polynomial with continu-
ous derivatives up to order 2 at each knot. We describe the model with truncated power basis functions

y = β0 +β1b1(xi)+β2b2(xi)+ · · ·+βK+1bK+1(xi)+ εi,

b1(xi) = xi (15)

b2(xi) = x2
i (16)

b3(xi) = x3
i (17)

bk+3(xi) = (xi−ξk)
3
+, k = 1, . . . ,K (18)

(xi−ξk)
3
+ =

{
(xi−ξk)

3 if xi > ξk;
0 otherwise

Natural Cubic Splines
A natural cubic spline extraplates linearly beyond the boundary knots. This adds 4 extra contraints,
and allow us to put more internal knots for the same degree of freedom as a regular cubic spline. Knot
placement
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Figure 5: It shows the difference between Natural Cubic Spline and Cubic Spline.

• One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of
the observed X .

• A cubic spline with K knots has K +4 paramters or degree of freedom.

• A natural spline with K knots has K degrees of freedom.

Smoothing Splines
Consider fitting a smooth function to some data

min
g∈S

=
n

∑
i=1

(yi−g(xi))
2 +λ

∫
g′′(t)2dt

• The first term is RSS, and tries to make g(x) match data at each xi.

• The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the
tuning parameter λ≥ 0.

– The smaller λ, the more wiggly the function, eventually interpolating yi when λ = 0.

– As λ→ ∞, the function g(x) becomes linear.

– The solution is a natural cubic spline, with a knot at every unique value of xi. The roughness
peanlty still controls the roughness via λ.

Some details about Smoothing Spline

• Smoothing splines avoid the knot-selection issue, leaving single λ to be chosen.

• The vector of n fitted values can be written as ĝλ = Sλy, where Sλ is a n× n matrix (determined
by the xi and λ)

• The effective degrees of feedom are given by

d fλ =
n

∑
i=1
{Sλ}ii.

• We can specify d f rather than λ.
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Local Regression
With a sliding weight function, we fit separate linear fits over the range of X by weighed least squares.
Generalized Additive Models
Allows for flexible non-linearities in several variables, but retain the additive structure of linear models.

yi = β0 + f1(xi j)+ f2(xi2)+ · · ·+ fp(xip)+ εi

GAMs for classification

log
(

p(X)

1− p(X)

)
= β0 + f1(X1)+ f2(X2)+ · · ·+ fp(Xp).

6 Tree-based methods

• It involves stratifying or segmenting the predictor space into a number of simple regions.

• Since the set of splitting rules used to segment the predictor psace can be summarized in a tree,
these types of approaches are known as decision-tree methods.

6.1 Terminology for Trees

• In keeping with the tree analogy, the regions R1,R2,R3 are known as terminal nodes.

• Decision trees are typically drawn upside down, in the sense that the leaves are at the bottom of
the tree.

• The points along the tree where the predictor space is split are referred to as internal nodes

6.2 Tree-building process

• In theory, the regions could have any shape. However, we choose to divide the predictor space into
high-dimensional rectangles, or boxes, for simplicity and for ease of interpretation of the resulting
predictive model

• The goal is to find boxes R1, . . . ,RJ that minimize the RSS, given by

J

∑
j=1

∑
i∈R j

(yi− ŷR j)
2.

where ŷR j is the mean response for the training observations within the jth box, which is also one
of the terminal leaves.

• It is computationally infeasible to consider every possible partition of the feature space into J
boxes

• For this reason, we take a top-down, greedy approach that is know as recursive binary splitting

• The approach is top-down because it begins at the top of the tree and then succesively splits the
predictor space; each split is indicated via two new branches further down on the tree

• It is greedy because at each step of the tree-building process, the best split is made at that particular
step, rather than looking ahead and picking a split that will lead to a better tree in some future step.

• We predict the response for a given test observation using the mean of the training observations in
the region to which that test observation belongs.
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6.3 Pruning a tree

• Grow a very large tree T0, and then prune it back in order to obtain a subtree.

• cost complexity pruning — also known as weakest link pruning is used to do this.

• We consider a sequence of trees indexed by a nonnegative tuning parameter α. For each value of
α there corresponds a subtree T ⊂ T0 such that

|T |

∑
m=1

∑
i:xi∈Rm

(yi− ŷRm)
2 +α|T |

is as small as possible. Here |T | indicates that the number of terminal nodes of the tree T , Rm is
the rectangle (i.e. the subseet of predictor space) corresonding to the mth terminal node, and ŷRm

is the mean of the training observations in Rm. The formulation is similar to the Lasso.

• The tuning paramter α controls a trade-off between the subtree’s complexity and its fit to the
training data.

• We select an optimal value α̂ using cross-validation.

• We then return to the full data set and obtain the subtree corresponding to α̂.

6.4 Classification Trees

• Very similar to a regression tree, except that it is used to predict a qualitative response rather than
a quantitative one.

• For a classification tree, we predict that each observation belongs to the most commonly occurring
class of training observations in the region to which it belongs.

• In the classification setting, RSS cannot be used as a criterion for making the binary splits

• A natural alternative to RSS is the classification error rate. this is simply the fraction fo the training
observations in that region that do not belong to the most common class:

E = 1−max
k

(p̂mk).

Here p̂mk represents the proportion of training observation in the mth region that are from the kth
class

• Classification error is not sufficiently sensitive for tree-growing, and in practice two other mea-
sures are preferable.

• The Gini index is defined by

G =
K

∑
k=1

p̂mk(1− p̂mk)

a measure of total variance across the K classes. The Gini index takes on a small value if all of
the p̂mk’s are close to zero or one

• For this reason the Gini index is referred to as a measure of node purity — a small value indicates
that a node contains predominantly observations from a single class.
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• An alternative to the Gini index is cross-entropy, given by

D =−
K

∑
k=1

p̂mk log p̂mk.

• It turns out that the Gini index and the cross-entropy are very similar numerically.

6.5 Bagging

• Bootstrap aggregation or bagging, is a general-purpose procedure for reducing the variance of a
statistical learning method.

• Recall that given a set of n indepedent observations Z1, . . . ,Zn, each with variance σ2, the variance
of the mean Z̄ of the observations is given by σ2/n.

• In other words, averaging set of observations reduces variance.

• We generate B different bootstrapped trainnig data sets. We then train our method on the bth
bootstrapped training set in order to get f̂ ∗b(x), the prediction at a point x. We then average all the
prediction to obatin

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x)

• For classification trees: for each test observation, we record the class predicted by each of the B
trees, and take a majority vote: the overall prediction is the most common occurring class among
the B predictions.

Out-of-Bag Error Estimation

• There is a very straightforward way to estimate the test error of a bagged model.

• On can show that on average, each bagged tree makes use of around two-thirds of the observations.

• The remaining one-third of the observations not used to fit a given bagged tree are referred to as
the out-of-bag (OOB) observations

• We can predict the response for the ith observation using each of the trees in which that observa-
tions was OOB. This will yield around B/3 predictions for the ith observation which we average.

• This estimate is essentially the LOO cross-validation erro for bagging, if B is large.

Random Forests

• RF provide an improvement over bagged trees by way of a small tweak that decorrelates the trees.
This reduces the variance when we average the trees.

• As in bagging, we build a number of decision trees on bootstrapped training samples.

• But when building these decision trees, each time a split in a tree is considered, a random selection
of m predictors is chosen as split candidates from the full set of p predictors. The split is allowed
to use only one of those m predictors.

• A fresh selection of m predictors is taken at each split, and typicaly we choose m≈√p — that is,
the number of predictors considered at each split is approxmately equal to the square root of the
total number of predictors.
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6.6 Boosting

Boosting for decision trees works in a similar way as bagging, except that trees are grown sequentially:
each tree is grown using information from preivsouly grown trees. Boosting is a way of fitting an additive
expansion in a set of elementary “basis” functions.

Figure 6: Boosting algorithm.

The idea behind

• Unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and
potentially overfitting, the boosting approach instead learns slowly.

• Given the current model, we fit a decision tree to the residuals from the model. We then add this
new decision tree into the fitted function in order to update the residuals.

• Each of these trees can be rather small, with just a few terminal nodes, determined by the param-
eter d in the algorithm.

• By fitting small trees to the residuals, we slowly improve f̂ in areas where it does not perform
well. The shrinkage parameter λ slows the process down even further, allowing more and different
shaped trees to attack the residuals.

6.7 Gradient Boosting Decision Tree (GBDT)

The boosted tree model is a sum of trees,

fM(x) =
M

∑
m=1

T (x;Θm)

At each step in the forward stagewise procedure one must solve

Θ̂m = argmin
Θm

N

∑
i=1

L(yi, fm−1(xi)+T (xi;Θm)).

for the region set and constants Θm = {RPym,γ jm}Jm
1 of the next tree, given the current model fm−1(x).
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7 Support Vector Machines

We try and find a plane that separates the classes in feature space.
If we cannot, we get creative in two ways:

• We soften what we mean by “separates”, and

• We enrich and enlarge the feature space so that separation is possible.

7.1 What is a Hyperplane?

• A hyperplane in p dimension is a flat affine subspace of dimension p−1.

• In general the equation for a hyperplane has the form

β0 +β1X1 +β2X2 + · · ·+βpXp = 0.

• In p = 2 dimensions a hyperplane is is a line

• If β0 = 0, then the hyperplane goes through the origin, otherwise not.

• The vector β = (β1,β2, . . .βp) is called the normal vector — it points in a direction orthogonal to
the surface of a hyperplane.

7.2 Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two
classes.
Constrained optimization problem

maximize
β0,β1,...,βp

M

subject to ∑
p
j=1 β2

j = 1,, yi(β0 +β1xi1 + · · ·+βpxip)≥M for all i = 1, . . . ,N. The data is separable when
N < p, such as the genome data. When non-separable, the support vector classifier maximizes a soft
margin.

maximize
β0,β1,...,βp,ε1,...εn

M subject to ∑
p
j=1 β2

j = 1, yi(β0 +β1xi1 + · · ·+βpxip)≥M(1− εi), ε≥ 0, ∑
n
i=1 εi ≤C.

ε is a slack which allows for some errors inside the margins, C is a regularization parameter, which is a
budget of ε. Increasing C makes the margin “softer,” so that the orientation of the separating hyperplane
is influenced by more points.
Note. Lasso and Ridge Regression and SVMs treat the samples equally, so they should be standardized
beforehand.
Feature Expansion

• Enlarge the space of features by including transformations; e.g. X2
1 ,X

3
1 ,X1X2,X1X2

2 , . . . . Hence go
from a p dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the original space.

• For example, suppose we use (X1,X2,X2
1 ,X

2
2 ,X1X2) instead of just (X1,X2). Then the decision

boundary would be of the form

β0 +β1X1 +β2X2 +β3X2
1 +β4X2

2 +β5X1X2 = 0
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This leads to nonlinear decision boundaries in the original space (Cubic Polynomials). It is linear in
the new variable space, which results in a linear boundary in the high dimensional space. But nonlinear
in the original space. In the lower dimensional space, however, these are conic sections of a quadratic
polynomial.
Inner products and support vectors

• The linear support vector classifier can be represented as

f (x) = β0 +
n

∑
i=1

αi〈x,xi〉— n parameters.

• To estimate the parameters α1, . . . ,αn and β0, all we need are the
(n

2

)
inner products 〈xi,xi′〉 be-

tween all pairs of training observations.

• It turns out that most of the α̂i can be zero:

f (x) = β0 +∑
i∈S

α̂i〈x,xi〉,

where S is the support set of indices i such that α̂i > 0. It is a sparsity in the data space.

7.3 Regularization and reproducing kernel Hilbert spaces

A generalized class of regularization problems has the form

min
f∈H

[
N

∑
i=1

L(yi, f (xi))+λJ( f )

]

where L(y, f (x)) is a loss function, J( f ) is a penalty functional and H is a space of functions which J( f )
is defined.
An important subclass of problems of the form are generated by a postive definite kernel K(x,y), and
the corresponding space of functions HK is called a reproducing kernel Hilbert space (RKHS). The
penalty functional J is defined in terms of the kernel as well. Let x,y ∈ Rp. We consider the space of
functions generated by the linear span of {K(·,y),y ∈Rp}; i.e. arbitrary linear combinations of the form
f (x) = ∑m αmK(x,ym), where each kernel term is viewed as a function of the first argument, and indexed
by the second. Suppose that K has an eigen-expansion

K(x,y) =
∞

∑
i=1

γiφi(x)φi(y),

with γi ≥ 0, ∑
∞
i=1 γ2

i < ∞. Elements of HK have an expansion in terms of these eigen-functions,

f (x) =
∞

∑
i=1

ciφi(x).

with the constraint that

‖ f‖2
HK

=
∞

∑
i=1

c2
i /ri < ∞,

where ‖ f‖HK
is the norm induced by K. The penalty function for the space HK is defined to be the

squared norm J( f ) = ‖ f‖2
HK

. The quantity J( f ) can be interpreted as a generalized ridge penalty, where
functions with large eigenvalues in the expansion get penalized less and vice versa.
Kernels and Support Vector Machines
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• If we can compute inner-products between observations, we can fit a SV classifier. It can be quite
abstract.

• Some special kernel functions can do this for us. E.g.

K(xi,xi′) =

(
1+

p

∑
j=1

xi jxi′ j

)d

computes the inner-products needed for d dimensional polynomials —
(p+d

d

)
basis functions.

• The solution has the form
f (x) = β0 +∑

i∈S
α̂iK(x,xi).

Radial Kernel

K(xi,xi′) = exp(−γ

p

∑
j=1

(xi j− xi′ j)
2),

It has an implicit feature space, and is very high dimesnional, It controls variance by squashing
down most dimensions severely.
More than 2 classes
OVA: One versus All. Fit K different 2-class SVM classifiers f̂k(x), k=1,. . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x∗) is largest.
OVO: One versus One. Fit all

(K
2

)
pairwise classifiers f̂k`(x). Classify x∗ to the class that wins the

most pairwise competitions.

7.4 Support Vector Machines vs Logistic Regression

With f (X) = β0 +β1X1 + · · ·+βpXp can rephrase support vector classifier optimization as

minimize
β0,β1,...,βp

(
max[0,1− yi f (xi)]+λ

p

∑
j=1

β
2
j

)
This has the form loss plus penalty. This loss is known as the hinge loss, which is very similar to “loss”

Figure 7: SVMs vs Logistic Regression.

in logistic regression (negative log-likelihood).
Which one to use
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• When clases are nearly separable, SVM and LDA do better than LR.

• When not, LR (with ridge penalty) and SVM perform similarly.

• If you wish to etimate probabilities, LR is the choice.

• For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR and LDA as well,
but computations are more expensive.

8 Unsupervised learning

8.1 PCA

The principal component direction φ1,φ2,φ3 . . . are the ordered sequence of right singular vectors of the
matrix X, and the variances of the components are 1

n times the squares of the singular values. There are
at most min(n−1, p) principal components.

Hyperplane on PCA and linear regression. For linear regression, we measure the distance from the
label y to the point in the hyperplane. By contrast, PCA finds the shortest distance from the data points to
the hyperplane, and the distance is perpendicular to the hyperplane. In other words, we find a hyperplane
that passes through the middle of the data points, We compute the distance from the data points to the
hyperplane and sum the sqauress of the distance. We want the hyperplane that gets closest to the data.

Scaling of the variables matters — If the varaibles are in different units, scaling each to have stan-
dard deviation equal to one is recommended.

• The first principal component of a set of features X1,X2, . . . ,Xp is the normalized lienar combina-
ton of the features

Z1 = φ11X1 +φ21X2 + · · ·+φp1Xp

that has the largest variance. By normalized, we mean that ∑
p
j=1 φ2

j1 = 1.

• We refer to the elements φ11, . . . ,φp1 as the loadings of the first principal component; together, the
loadings make up the principal component loading vector, φ1 = (φ11φ21 . . .φp1)>.

• We constrain the loadings so that theri sum of squares is equal to one, since otherwise setting these
elements to be arbitrarily large in absolute value could result in an arbitrarily large variance.

Proportion Variance Explained

• To understand the strength of each PCA component, we are interested in knowing the proportion
of variance explained (PVE) by each one.

• The total variance present in data set (assuming that the varaibles have been centered to have mean
zero) is defined as

p

∑
j=1

Var(X j) =
p

∑
j=1

1
n

n

∑
i=1

x2
i j

and the variance explained by the mth principal component is

Var(Zm) =
1
n

n

∑
i=1

z2
im

• It can be shown that ∑
p
j=1 Var(X j) = ∑

M
m=1 Var(Zm), with M = min(n−1, p).
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• the PVE of the mth principal component is given by the positive quantity between 0 and 1

∑
n
i=1 z2

im

∑
p
j=1 ∑

n
j=1 x2

i j

• The PVEs sum to one. We sometimes display the cumulative PVEs.

To select the number of components, we could use cross-validation to find the number of components
used in regression. We cannot use the cross-validation directly due to the lack of reponse.

8.2 Clustering

K-means

• The idea behind K-means clustering is a good clustering is one for which the within-cluster vari-
ation is as small as possible.

• The within-cluster variation for cluster Ck is a measure WCV (Ck) of the amount by which the
observations within a cluster differ from each other.

• We want to solve the problem

minimize
C1,...,Ck

{ K

∑
k=1

WCV (Ck)

}
= minimize

C1,...,CK

{ K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xi j− xi′ j)
2
}
. (19)

• The algorithm is guaranteed to decrease the value of the objective at each step.

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(Xi j− xi′ j)
2 = 2 ∑

i∈Ck

p

∑
j=1

(xi j− x̄k j)
2.

where x̄k j =
1
|Ck| ∑i∈Ckxi j is the mean for feature j in cluster Ck. However, it is not guaranteed to

give the global minimum.

In hierarchical clustering, we do not know in advance how many clusters we want; in fact, we end up
with a tree-like visual representation of the observations, called a dendrogram, that allows us to view at
once the clusterings obtained for each possible number of clusters, from 1 to n.
In case of hierarchical clustering,

• What dissimilarity measure should be used

• What type of linkage should be used

Some engineering can also be done to select the samples. In the breast cancer microarray example, they
select 500 intrinsic genes out of 8000 genes, which have the smallest within/between variation. The
intrinsic genes varies a lot between women but little within women.

9 Predictive Analytics for Data Mining

• In data mining applications, usually only a small fraction of the large number of predictor variables
that have been included in the analysis are actually relevant to prediction.

• Unlike many applications such as pattern recognition, there is seldom reliable domain knowledge
to help create especially relevant features and/or filter out the irrelevant ones, the inclusion of
which dramatically degrades the performance of many methods.

• It is also desirable to have information providing qualitative understanding of the relationship
between joint values of the input variables and the resulting predicted response value.
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Figure 8: Some properties in predictive analytics.
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