
Statistics

Guanqun Cao
guanqun.cao@tut.fi

November 29, 2020

Contents
1 Theory 3

1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Exploratory data analysis 4
2.1 Graphical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Linear relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Producing data 8

4 Probability 10
4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Sampling distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Central Limit Theoreom (CLT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Normal approximation of counts and proportions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Summary about probabilty: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6 Common rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.6.1 Probability rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6.2 Rules for means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6.3 Rules for variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Statistical inference 16
5.1 Interval estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Sample Size calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Some cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Statistical testing 21
6.1 Stating the hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Collecting and Summarizing the Data (Using a Test Statistic) . . . . . . . . . . . . . . . . . . . . 21
6.3 Finding the P-value of the Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Concepts of the Critical Value Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 Drawing Conclusions Based on the P-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.6 Issues about the Hyporthesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7 Hypothesis Testing for the Population Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.8 z-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.9 t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.10 The t Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.11 t score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.12 Summary of z-test and t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



7 Inference for Distributions 30
7.1 Power and Inference as a Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Two sample statistic test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Inference for relationships 31
8.1 Case C→ Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 Case C→C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Case Q→ Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Inference for Regression 38
9.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Facts about least-squares regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Book: Moore et al., Introduction to the practice of statistics

2



1 Theory

1.1 Basics
Statistics is all about is converting data into useful information.
The process of drawing a statistics:

1. The process of statistics starts when we identify what group we want to study or learn something about. We
call this group the population.

2. We cannot study the entire population and therefore, a more practical approach would be to examine and
collect data only from a subgroup of the population, which we call a sample.

3. We need to summarize the list in meaningful way, which is exploratory data analysis.

4. Before we can do so, we need to look at how the sample we’re using may differ from the population as a
whole, so that we can factor that into our analysis. To examine this difference, we use probability.

5. Finally, we can use what we’ve discovered about our sample to draw conclusions about our population. We
call this final step in the process inference.

In other words, there is a four-step process that encompasses statistics: data production, exploratory data analysis,
probability, and inference.
Terminology:

Figure 1: An illustration of big picture of statistics.

• Data are pieces of information about individuals organized into variables. By an individual, we mean a
particular person or object.

• By a variable, we mean a particular characteristic of the individual.

• A dataset is a set of data identified with particular circumstances. Datasets are typically displayed in tables,
in which rows represent individuals and columns represent variables.

• Categorical variables take category or label values and place an individual into one of several groups. Each
observation can be placed in only one category, and the categories are mutually exclusive.

• Quantitative variables take numerical values and represent some kind of measurement.

Scales of Measurement / Types of Variable

• From least to most precise: Norminal, ordinal, interval and ratio.

• The nominal scale of measurement is a qualitative measure that uses discrete categories to describe a char-
acteristic of the research participants.
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• An ordinal scale of measurement rank-orders participants on some scale or attribute, but the difference
between numbers does not convey fixed or equal differences.

• The interval scale of measurement takes numerical form, and the distance between pairs of consecutive
numbers is assumed to be equal. However, interval variables do not have a meaningful zero point; thus, a
zero does not mean the absence of the attribute, but rather it is a particular (but arbitrary) point on the scale.

• The ratio scale of measurement is similar to the interval scale. The main difference between interval and ra-
tio measurements has to do with how we interpret a value of zero. For ratio measures, the zero is meaningful
and tell us that the attribute is not present in the participant.

The distribution of a variable suggests: what values the variable takes, and how often the variable takes those
values.

2 Exploratory data analysis

2.1 Graphical illustration
Pictograms

• The distribution of a categorical variable is summarized using:

• Graphical display: pie chart or bar chart, supplemented by

• Numerical summaries: category counts and percentages.

• A variation on pie charts and bar charts is the pictogram.

• Pictograms can be misleading, so make sure to use a critical approach when interpreting the information the
pictogram is trying to convey.

Histogram interpretation

• 4 major features: shape, center, spread and outliers.

• There are several methods to measure the first and the third quartile. The first method is to calculate the
median of the first half or second half. The second method is to take the mean of the first or second half of
the sorted data, if the number of samples is even.

• Shape: Symmetric: unimodal, bimodal and uniform. Skew: skewd left or right distribution. A distribution
is called skewed right if, as in the histogram above, the right tail (larger values) is much longer than the left
tail (small values), and vice versa for skewed left.

• Multi-modal: If a distribution has more than two modes, it is called multi-modal.

• Center: The center of the distribution is its midpoint—the value that divides the distribution so that ap-
proximately half the observations take smaller values, and approximately half the observations take larger
values.

• Spread: The spread (also called variability) of the distribution can be described by the approximate range
covered by the data.

• Outlier: Outliers are observations that fall outside the overall pattern.

Other plots: stemplot, dotplot.
Quantitative variables:
5 numbers: the extremes (min and max), which provide the range covered by all the data; and the quartiles (Q1,
M and Q3), which provide IQR, the range covered by the middle 50% of the data.
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• Mode: the value where the distribution has a “peak” and saw examples when distributions have one mode
(unimodal distributions) or two modes (bimodal distributions). The mode is the most frequently occurring
value.

• The mean is very sensitive to outliers (because it factors in their magnitude), while the median is resistant
to outliers.

• For symmetric distributions with no outliers: x̄ is approximately equal to M.

• The mean is an appropriate measure of center only for symmetric distributions with no outliers. In all other
cases, the median should be used to describe the center of the distribution.

• For skewed right distributions and/or datasets with high outliers: x̄ > M.

Measure of Spread

• Range = Max - min

• Inter-Quartile Range (IQR): the IQR measures the variability of a distribution by giving us the range covered
by the middle 50% of the data. It is derived by computing the range between the median of the lower half
of data (Q1) and that of higher half of data (Q3).

• The IQR should be used as a measure of spread of a distribution only when the median is used as a measure
of center.

• An observation is considered a suspected outlier if it is either below Q1−1.5(IQR) or above Q3+1.5(IQR).

Some comments on histogram and boxplots

• The distribution of a quantitative variable is best represented graphically by a histogram.

• Boxplots are most useful when presented side-by-side for comparing and contrasting distributions from two
or more groups.

• The five-number summary provides a complete numerical description of a distribution. The median de-
scribes the center, and the extremes (which give the range) and the quartiles (which give the IQR) describe
the spread.

• The boxplot graphically represents the distribution of a quantitative variable by visually displaying the five
number summary and any observation that was classified as a suspected outlier using the 1.5 (IQR) criterion.

2.2 Measures
Standard Deviation: The idea behind the standard deviation is to quantify the spread of a distribution by measuring
how far the observations are from their mean (x̄).

Use x̄ (the mean) and the standard deviation as measures of center and spread only for reasonably symmetric
distributions with no outliers.

• The standard deviation measures the spread by reporting a typical (average) distance between the data points
and their average.

• It is appropriate to use the SD as a measure of spread with the mean as the measure of center.

• Since the mean and standard deviations are highly influenced by extreme observations, they should be used
as numerical descriptions of the center and spread only for distributions that are roughly symmetric, and
have no outliers.

• For symmetric mound-shaped distributions, the Standard Deviation Rule tells us what percentage of the
observations falls within 1, 2, and 3 standard deviations of the mean, and thus provides another way to
interpret the standard deviation’s value for distributions of this type.

The Standard Deviation Rule (The 68-95-99.7 rule):

5



• Approximately 68% of the observations fall within 1 standard deviation of the mean.

• Approximately 95% of the observations fall within 2 standard deviations of the mean.

• Approximately 99.7% (or virtually all) of the observations fall within 3 standard deviations of the mean.

Figure 2: An illustration of standard deviation rule.

Two variables can be explained as

• the explanatory variable (also commonly referred to as the independent variable)-—the variable that claims
to explain, predict or affect the response; and

• the response variable (also commonly referred to as the dependent variable)-—the outcome of the study.

• We should firstly classify the two relevant variables according to their role and type, and only then can we
determine what statistical tools should be used to analyze them.

C→C

• The relationship between two categorical variables is summarized using:

– Data display: two-way table, supplemented by

– Numerical summaries: conditional percentages.

• Conditional percentages are calculated for each value of the explanatory variable separately. They can be
row percents, if the explanatory variable “sits” in the rows, or column percents, if the explanatory variable
“sits” in the columns.

• When we try to understand the relationship between two categorical variables, we compare the distributions
of the response variable for values of the explanatory variable. In particular, we look at how the pattern of
conditional percentages differs between the values of the explanatory variable.

C→ Q
When exploring the relationship between a categorical explanatory variable and a quantitative response, we es-
sentially compare the distributions of the quantitative response for each category of the explanatory variable using
side-by-side boxplots supplemented by descriptive statistics.
Q→ Q
It is important to mention again that when creating a scatterplot, the explanatory variable should always be plotted
on the horizontal X-axis, and the response variable should be plotted on the vertical Y-axis. Recall that when we
described the distribution of a single quantitative variable with a histogram, we described the overall pattern of the
distribution (shape, center, spread) and any deviations from that pattern (outliers). We do the same thing with the
scatterplot.
Relationships with a linear form are most simply described as points scattered about a line. Relationships with

a curvilinear form are most simply described as points dispersed around the same curved line. The strength of
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Figure 3: An illustration of using scatter plot for explaining distributions.

the relationship is determined by how closely the data follow the form of the relationship. Data points that deviate
from the pattern of the relationship are called outliers.
Adding labels to the scatterplot that indicate different groups or categories within the data might help us get more
insight about the relationship we are exploring.

2.3 Linear relationships
The correlation coefficient (r) is a numerical measure that measures the strength and direction of a linear rela-
tionship between two quantitative variables.

r =
1

(n−1)

n

∑
i=1

(xi− x̄)(yi− ȳ)√
Σxx
√

Σyy
. (1)

r ∈ [−1,1]. The correlation close to −1 indicates a negative relationship between the variables. The correlation
close to +1 indicates a negative relationship between the variables. The correlation close to 0 indicates no rela-
tionship.
Properties:

1. The correlation does not change when the units of measurement of either one of the variables change. In
other words, if we change the units of measurement of the explanatory variable and/or the response variable,
the change has no effect on the correlation (r). In other words, r is unitless.

2. The correlation measures only the strength of a linear relationship between two variables. It ignores any
other type of relationship, no matter how strong it is. The correlation is useless for assessing the strength of
any type of relationship that is not linear.

3. The correlation by itself is not sufficient to determine whether a relationship is linear.

4. The correlation is heavily influenced by outliers.

Least-squares regression
Y = a+bX , (2)

where X̄ is the mean of the explantory variable’s value, SX is the standard deviation of the explantory variable
value, Ȳ is the mean of the response variable’s value, SY is the standard deviation of the response variable’s value
and r is the correlation coefficient.
Then we have

b = r

(
SY

SX

)
(3)

a = Ȳ −bX̄ . (4)
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The slope of the least squares regression line can be interpreted as the average change in the response variable
when the explanatory variable increases by 1 unit.
Prediction for ranges of the explanatory variable that are not in the data is called extrapolation. Since there
is no way of knowing whether a relationship holds beyond the range of the explanatory variable in the data,
extrapolation is not reliable, and should be avoided.
Principle: Association does not imply causation!

2.4 Causality
• A lurking variable is a variable that is not among the explanatory or response variables in a study, but could

substantially affect your interpretation of the relationship among those variables. An observed association
between two variables is not enough evidence that there is a causal relationship between them.

• Whenever including a lurking variable causes us to rethink the direction of an association, this is called
Simpson’s paradox.

• A Lurking variable help us to gain a deeper understanding of the relationship between variables, or lead us
to rethink the direction of an association.

• A lurking variable is tied in (or confounded) with the explanatory variable’s values, and may itself cause the
response to be success or failure.

3 Producing data
Exploratory data analysis seeks to illuminate patterns in the data by summarizing the distributions of quantitative
or categorical variables, or the relationships between variables. In statistical inference, we will use the summaries
about variables or relationships that were obtained in the study to draw conclusions about what is true for the
entire population from which the sample was chosen. For this process to “work” reliably, it is essential that the
sample be truly representative of the larger population.

The design for producing data must be considered carefully. Studies should be designed to discover what we
want to know about the variables of interest for the individuals in the sample. In particular, if what you want to
know about the variables is whether there is a causal relationship between them, special care should be given to
the design of the study.

A sample that produces data that is not representative because of the systematic under- or over-estimation of
the values of the variable of interest is called biased. Bias may result from either a poor sampling plan or from a
poor design for evaluating the variable of interest. Type of samples:

• Volunteer samples indicate individuals have selected themselves to be included.

• Convenience sample are individuals happen to be at the right time and place to suit the schedule of the
researcher.

• The sampling frame of individuals from whom the sample is actually selected should match the population
of interest; bias may result if parts of the population are systematically excluded.

• Systematic sampling shows that it may not be subject to any clear bias, but it would not be as safe as taking
a random sample.

• A simple random sample (SRS) is if individuals are sampled completely at random, and without replace-
ment, then each group of a given size is just as likely to be selected as all the other groups of that size.

Sampling techniques:

• Simple Random Sampling indicates that each individual as the same chance of being selected.

• Cluster Sampling — This sampling technique is used when our population is naturally divided into groups
(which we call clusters).

• Stratified Sampling—Stratified sampling is used when our population is naturally divided into sub-populations,
which we call stratum.
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• Difference between Cluster Sampling and Stratified Sampling: In cluster sampling, we take a random sam-
ple of whole groups of individuals, while in stratified sampling we take a simple random sample from each
group.

There is a multi-stage sampling, which perform sampling in steps.
Data sampling is the first stage of data production, and now we proceed to the second step of designing studies:

• Carry out an observational study, in which values of the variable or variables of interest are recorded as they
naturally occur. There is no interference by the researchers who conduct the study.

• Take a sample survey, which is a particular type of observational study in which individuals report variables’
values themselves, frequently by giving their opinions.

• Perform an experiment. Instead of assessing the values of the variables as they naturally occur, the re-
searchers interfere, and they are the ones who assign the values of the explanatory variable to the individu-
als. The researchers “take control” of the values of the explanatory variable because they want to see how
changes in the value of the explanatory variable affect the response variable.

Here are the types of designing stuides:

• a study in which individuals report variable values themselves (frequently their opinions), is a survey.

• a retrospective observational study involves recording variables’ values that naturally happened in the
past.

• a prospective observational study records the values of variables as they naturally happen forward in time.

Figure 4: A comparison between the observation study and experiment.

It is because of the existence of a virtually unlimited number of potential lurking variables that we can never be
100% certain of a claim of causation based on an observational study.
Sample surveys include: open vs. closed questions, unbalanced response options, leading questions, planting
ideas with questions, complicated questions, sensitive questions.

Observational studies:

• The explanatory variable’s values are allowed to occur naturally.

• Because of the possibility of lurking variables, it is difficult to establish causation.

• If possible, control for suspected lurking variables by studying groups of similar individuals separately.

• Some lurking variables are difficult to control for; others may not be identified.

Experiments

• The explanatory variable’s values are controlled by researchers (treatment is imposed).

• Randomized assignment to treatments automatically controls for all lurking variables.
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• Making subjects blind avoids the placebo effect.

• Making researchers blind avoids conscious or subconscious influences on their subjective assessment of
responses.

• A randomized controlled double-blind experiment is generally optimal for establishing causation.

• A lack of realism may prevent researchers from generalizing experimental results to real-life situations.

• Noncompliance may undermine an experiment. A volunteer sample might solve (at least partially) this
problem.

• It is impossible, impractical or unethical to impose some treatments.

In order to set up an experiment of more than one explanatory vairables, there has to be one treatment group for
every combination of categories of the two explanatory variables.
Randomization may be employed at two stages of an experiment: in the selection of subjects, and in the assign-
ment of treatments. The former may be helpful in allowing us to generalize what occurs among our subjects to
what would occur in the general population, but the reality of most experimental settings is that a convenience or
volunteer sample is used.
In some cases, an experiment’s design may be enhanced by relaxing the requirement of total randomization and
blocking the subjects first, dividing them into groups of individuals who are similar with respect to an outside vari-
able that may be important in the relationship being studied. Blocking in the assignment of subjects is analogous
to stratification in sampling. Such a study design, called matched pairs, may enable us to pinpoint the effects of

Figure 5: An illustration of blocking in Randomization.

the explanatory variable by comparing responses for the same individual under two explanatory values, or for two
individuals who are as similar as possible except that the first gets one treatment, and the second gets another (or
serves as the control). Even though the steps are carried out in this order chronologically, it is generally best for
researchers to decide on a study design before they actually obtain the sample.

4 Probability
Probability is the underlying foundation for the methods of statistical inference. We use probability to quantify
how much we expect random samples to vary. This gives us a way to draw conclusions about the population in
the face of the uncertainty that is generated by the use of a random sample. We can use probability to describe the
likelihood that our sample is within a desired level of accuracy.
A good example about probabily: Let’s Make a Deal. The game is mainly about point out the gift from the
box/door, and reveal one from the rest two by the showman. People then should choose the box which is not
chosen previously.
In general, probability is not always intuitive.
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Probability is a mathematical description of randomness and uncertainty. It is a way to measure or quantify
uncertainty. Another way to think about probability is that it is the official name for “chance.” One way to think
of probability is that it is the likelihood that an event will occur. Two fundamental ways to determine probability:
theoretical (classical) and empirical (observational).

• Classical methods are used for games of chance, such as flipping coins, rolling dice, spinning spinners,
roulette wheels, or lotteries. Theoretical methods use the nature of the situation to determine probabilities.

• Empirical methods use a series of trials that produce outcomes that cannot be predicted in advance (hence
the uncertainty).

P(A) = Relative Frequency of Event A =
numbe of times A occured
total number of repetitions

Birthday paradox
p(di f f erent)≈ e−(n

2/2·T )

The above is derived from the Taylor expansion which approximates the non-match between the sequential pairs.

1− p(match)≈ e−(n
2/2·T )

Law of Large Numbers: The actual (or true) probability of an event (A) is estimated by the relative frequency with
which the event occurs in a long series of trials. The more repetitions that are performed, the closer the relative
frequency gets to the true probability of the event.
Relative Frequency: The probability of an event (A) is the relative frequency with which the event occurs in a
long series of trials.

4.1 Random Variables
When the outcomes are quantitative, we call the variable a random variable. In statistics, we reserve the term
“random variable” for quantitative variables.
The features of a probability distribution:

• The outcomes described by the model are random. This means that individual outcomes are uncertain, but
there is a regular, predictable distribution of outcomes in a large number of repetitions.

• The model provides a way of assigning probabilities to all possible outcomes.

• The probability of each possible outcome can be viewed as the relative frequency of the outcome in a large
number of repetitions, so like any other probability, it can be any value between 0 and 1.

• The sum of the probabilities of all possible outcomes must be 1.

Probability density function
Benford’s Law states that a set of numbers satisfy that the leading digit d (d ∈ {1, . . . ,9}) occurs with probability:

P(d) = log10(d +1)− log10(d) = log10

(
1+

1
d

)
.

Linearity
xnew = axold +b has mnew =+b and σ2

new = a2σ2
old.

Standardizing Values
The first step to assessing a probability associated with a normal value is to determine the relative value with
respect to all the other values taken by that normal variable. This is accomplished by determining how many
standard deviations below or above the mean that value is. It is described by the z-score mathematically,

z =
x−µ

σ
.

The z-scores also allow us to compare values of different normal random variables.
A normal table tells the probability of a normal variable taking a value less than any standardized score z.
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We also get to know that, Q1 = −0.67σ, med = 0, Q3 = 0.67σ. Roughly 25%, or one quarter, of a normal
variable’s values are less than 0.67 standard deviations below the mean. Meanwhile, roughly 75%, or three
quarters, are less than .67 standard deviations above the mean. We use the standardized normal variable which is
called “Z”.
We should know that “The probability is 0.97 that a worker will spend less than how much money in a week on
lunch?” is equivalent to say that “What is the 97th percentile for the amount (X) spent by workers in a week for
their lunch?”.
In summary, there are two steps to solving the normal problems:

1. Given a normal value x, solve for probability:

z =
x−µ

σ

• Standardize: calculate
• Locate z in the margins of the normal table (ones and tenths for the row, hundredths for the column).

Find the corresponding probability (given to four decimal places) of a normal random variable taking
a value below z inside the table. (Adjust if the problem involves something other than a ”less-than”
probability, by invoking either symmetry or the fact that the total area under the normal curve is 1.)

2. Given a probability, solve for normal value x:

• (Adjust if the problem involves something other than a ”less-than” probability, by invoking either
symmetry or the fact that the total area under the normal curve is 1.) Locate the probability (given to
four decimal places) inside the normal table. Find the corresponding z value in the margins (row for
ones and tenths, column for hundredths).
• ”Unstandardize”: calculate

x = µ+ z ·σ

4.2 Sampling distribution
A statistic from a random sample or randomized experiment is a random variable. The probability distribution of
the statistic is its sampling distribution. Sample results change from sample to sample, is called sampling vari-
ability.
A parameter is a number that describes the population; a statistic is a number that is computed from the sample.
We study the center, spread and shape of the population parameters and statistics, which are also considers as

Figure 6: A table summarizes the parameters and statistics.

random variables.
The sampling distribution for large samples has less variability. p̂ has a normal distribution with a mean of µ p̂ = p

and the standard deviation σ p̂ =

√
p(1−p)

n , if np > 10 and n(1− p)> 10.
The standard deviation of all sample means (x̄) is σ√

n .

4.3 Central Limit Theoreom (CLT)
Draw an SRS of size N from any population with mean m and finite standard deviation s. When n is large, the
sampling distribution of the sample mean X̄ is approximately Normal:

X̄ ≈ N
(

µ,
σ√
n

)
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Central Limit Theorem is one of the most important results in introductory statistics. It is stated mathematically
as,
Suppose {X1,X2, . . . ,XN} is a sequence of i.i.d. random variables with E[Xi] = µ and Var[Xi] = σ2 < ∞. For
−∞ < a < ∞,

P

(
∑

N
i=1 Xi−nµ

σ
√

N
≤ a

)
→ 1√

2π

∫ a

−∞

e−x2/2dx as n→ ∞

Typical problem: We can find the sampling distribution of the sample mean (X̄), and use it to learn about the
likelihood of getting certain values of X̄ .

4.4 Normal approximation of counts and proportions
Draw an SRS of size n from a large population having population propor- tion p of successes. Let X be the count
of successes in the sample and p̂ = X/n be the sample proportion of successes. When n is large, the sampling
distributions of these statistics are approximately Normal:

X ≈ N(np,
√

np(1− p))

p̂≈ N(p,
√

p(1− p))

As a rule of thumb, we will use this approximation for values of n and p that satisfy np≥ 10 and n(1− p)≥ 10.

4.5 Summary about probabilty:
Probability trees are a useful visual tool for displaying and manipulating probabilities of events which naturally
happen in sequence (or in stages). It is particularly useful when we are given conditional probability in one
direction P(B|A), and need to find the reverse conditional probability P(A|B).
Random Variables
A random variable is a variable whose values are numerical results of a random experiment.

• A discrete random variable is summarized by its probability distribution—a list of its possible values and
their corresponding probabilities.

– The sum of the probabilities of all possible values must be 1.

– The probability distribution can be represented by a table, histogram, or formula.

• The probability distribution of a random variable can be supplemented with numerical measures of the
center and spread of the random variable.

– Center: The center of a random variable is measured by its mean (which is sometimes also referred
to as the expected value).

1. The mean of a random variable can be interpreted as its long run average.
2. The mean is a weighted average of the possible values of the random variable weighted by their

corresponding probabilities.
3. An application of the mean of a random variable is determining premiums for insurance policies.

– Spread: The spread of a random variable is measured by its variance, or more typically by its standard
deviation (the square root of the variance).
The standard deviation of a random variable can be interpreted as the typical (or long-run average)
distance between the value that the random variable assumes and the mean of X.

• Rules of means and variances give us an easy way to find the mean and standard deviations of the “new”
random variable a+ bX (given the mean and standard deviation of X), as well as the mean and standard
deviation of the “new” random variable X +Y (given the means and standard deviations of X and Y , and
assuming that X and Y are independent).

Binomial Random Variables

13



• The binomial random variable is a type of discrete random variable that is quite common.

• The binomial random variable is defined in a random experiment that consists of n independent trials, each
having two possible outcomes (called ”success” and ”failure”), and each having the same probability of
success: p. Such a random experiment is called the binomial random experiment.

• The binomial random variable represents the number of successes (out of n) in a binomial experiment. It
can therefore have values as low as 0 (if none of the n trials was a success) and as high as n (if all n trials
were successes).

• There are ”many” binomial random variables, depending on the number of trials (n) and the probability of
success (p).

• The probability distribution of the binomial random variable is given in the form of a formula and can be
used to find probabilities. Technology can be used as well.

• The mean and standard deviation of a binomial random variable can be easily found using short-cut formu-
las.

Continuous Random Variables The probability distribution of a continuous random variable is represented by
a probability density curve. The probability that the random variable takes a value in any interval of interest is
the area above this interval and below the density curve. An important example of a continuous random variable
is the normal random variable, whose probability density curve is symmetric (bell-shaped), bulging in the middle
and tapering at the ends.

• There are ”many” normal random variables, each determined by its mean (which determines where the
density curve is centered) and standard deviation, (which determines how spread out (wide) the normal
density curve is).

• Any normal random variable follows the Standard Deviation Rule, which can help us find probabilities
associated with the normal random variable.

• Another way to find probabilities associated with the normal random variable is using the standard normal
table. This process involves finding the z-score of values, which tells us how many standard deviations
below or above the mean the value is.

• An important application of the normal random variable is that it can be used as an approximation of the
binomial random variable (under certain conditions). A continuity correction can improve this approxima-
tion.

Sampling Distributions A parameter is a number that describes the population, and a statistic is a number that
describes the sample.

• Parameters are fixed, and in practice, usually unknown.

• Statistics change from sample to sample due to sampling variability.

• The behavior of the possible values the statistic can take in repeated samples is called the sampling distri-
bution of that statistic.

The sampling distribution of the sample proportion, (under certain conditions):

• is centered around p, the proportion in the entire population from which the sample is drawn.

• has standard deviation of
√

p(1−p)
n .

• is approximately normal (under certain conditions).

According to the Central Limit Theorem, the sampling distribution of the sample mean X̄ = 1
N (X1+X2+ · · ·+XN):

• µX̄ = 1
N (µX1 +µX2 + · · ·+µXN ) = µ, the mean in the entire population from which the sample is drawn.

• has a standard deviation of σ√
n based on the Standard Deviation Rule.

• is, for a large enough sample size n, approximately normal (regardless of the shape of the population distri-
bution).

14



4.6 Common rules
4.6.1 Probability rules

1. The probability of P(A) of any event A satisfies 0≤ P(A)≤ 1.

2. If S is the sample space in a probability model, then P(S) = 1.

3. Two events A and B are disjoint if they have no outcomes in common and so can never occur together. If A
and B are disjoint,

P(A or B) = P(A)+P(B)

This is the addition rule for disjoint events.

4. Complement rule; For any event A, P(Ac) = 1−P(A).

5. Multiplication rule: If event A and B are independent, then P(A and B) = P(A) ·P(B).

4.6.2 Rules for means

1. Linear transformation: If X is a random variable and a and b are contants, then

µa+bX = a+bµX

2. Sums: If X and Y are random variables, then

µX+Y = µX +µY

3. Differences: If X and Y are random variables, then

µX−Y = µX −µY

4.6.3 Rules for variances

As we know,
σ

2
X = E(X−E(X))2 = ∑ pi (Xi−µX )

2,

and the variances follow the rules below,

1. If X is a random variable and a and b are constants, then

σ
2
a+bX = b2

σ
2
X .

2. If X and Y are independent random variables, then

σ
2
X+Y = σ

2
X +σ

2
Y

σ
2
X−Y = σ

2
X +σ

2
Y

This is the addition rule for variances of independent random variables.

3. If X and Y have correlation ρ, then

σ
2
X+Y = σ

2
X +σ

2
Y +2ρσX σY

σ
2
X−Y = σ

2
X +σ

2
Y −2ρσX σY

where ρ = Cov(x,y)
σxσy

. This is the general addition rule for variances of random variables.
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5 Statistical inference
Statistical inference is the process that infers something about the population based on what is measured in the
sample. There are three forms of statistical inference.

• In point estimation, we estimate an unknown parameter using a single number that is calculated from the
sample data.

• In interval estimation, we estimate an unknown parameter using an interval of values that is likely to contain
the true value of that parameter (and state how confident we are that this interval indeed captures the true
value of the parameter).

• In hypothesis testing, we have some claim about the population, and we check whether or not the data
obtained from the sample provide evidence against this claim.

We use statistical inference in two cases:

• When the variable of interest is categorical, the population parameter that we will infer about is the popula-
tion proportion (p) associated with that variable.

• When the variable of interest is quantitative, the population parameter that we infer about is the population
mean (µ) associated with that variable.

X̄ is an unbiased estimator of µ, and p̂ is an unbiased estimator of p. Also note that, point estimates are truly
unbiased estimates for the population parameter only if the sample is random and the study design is not flawed.
The sampling distribution of the sample mean X̄ is, as we mentioned before, centered at the population mean and
has a standard deviation of σ√

n . This means that values of X̄ that are based on a larger sample are more likely
to be closer to µ. Similarly, since the sampling distribution of p̂ is centered at p and has a standard deviation of√

p(1−p)
n , which decreases as the sample size gets larger, values of p̂ are more likely to be closer to p when the

sample size is larger.
The point estimate of the population variance σ2 using the sample variance is s2 = (x1−x̄)2+···+(xn−x̄)2

n−1 . s2 is an
unbiased estimator for σ2. Division by n−1 accomplishes the goal of making this point estimator unbiased.
The idea behind interval estimation is, therefore, to enhance the simple point estimates by supplying information
about the size of the error attached.

5.1 Interval estimation
Given the fact that we are basing our estimate on one sample that is a small fraction of the population in point esti-
mates, these estimates are in themselves of limited usefulness, unless we can quantify the extent of the estimation
error. Interval estimation addresses this issue. The idea behind interval estimation is, to enhance the simple point
estimates by supplying information about the size of the error attached.
Confidence interval
How a 95% confidence interval for the population mean µ is constructed and interpreted.
According to the central limit theorem, the sampling distribution of the sample mean X̄ is approximately nor-
mal with a mean of µ and standard deviation of σ√

n . We therefore, firstly calculate the sample mean and its std.
Then based on the standard deviation rule for the normal distribution, we can obtain the 95% confidence interval
(x̄−2σ, x̄+2σ) for the mean µ.
The interval that we hope that contains the population mean µ is called an “interval for the population mean.” Any
normal random variable (in our case X̄), has a 95% chance (or probability of .95) of taking a value that is within
2 standard deviations of its mean.
Connection Between Confidence Intervals and Sampling Distributions
A 99% confidence interval for µ is x̄±2.576 σ√

n . A 90% confidence interval for µ is x̄±1.645 σ√
n .

There is a trade-off between the level of confidence and the precision with which the parameter is estimated. When
the confidence level increases, the interval becomes wider, i.e. the precision decreaes.
Understanding the General Structure
We explore the confidence interval for µ for different levels of confidence and it follows the form:

x̄± z∗ · σ√
n
, (5)
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where z∗ is a general notation for the multiplier thta depend on the level of confidence. The margin of error, m,

Figure 7: An illustration of the different components of the confidence interval and its structure.

is therefore “in charge” of the width (or precision) of the confidence interval, and the estimate is in charge of its
location (and has no effect on the width). Also note that σ in the margin is a fixed value. On an intuitive level, if
our estimate x̄ is based on a larger sample (i.e., a larger fraction of the population), we have more faith in it, or it
is more reliable, and therefore we need to account for less error around it.

5.1.1 Sample Size calculation

In situations where a researcher has some flexibility as to the sample size, the researcher can calculate in advance
what the sample size is that he/she needs in order to be able to report a confidence interval with a certain level of
confidence and a certain margin of error.

n =

(
z∗σ
m

)2

(6)

From the margin of error, we can determine the number of samples that we need given the margin of error. The
sample size should always be an integer. For non-integer results, we should always round up to the next highest
integer.
If the standard deviation is unknown, we can use the “range rule of thumb,” which says that, to a rough approx-
imation, σ is no bigger than range/4, where range = max – min. If you have no other estimate for σ, you can
therefore use range/4 as a rough estimate for σ.
One of the most important things to learn with any inference method is the conditions under which it is safe to use
it. It is very tempting to apply a certain method, but if the conditions under which this method was developed are
not met, then using this method will lead to unreliable results, which can then lead to wrong and/or misleading
conclusions. First, the sample must be random. Assuming that the sample is random, recall from the Probability
unit that the Central Limit Theorem works when the sample size is large (a common rule of thumb for “large” is
n > 30), or, for smaller sample sizes, if it is known that the quantitative variable of interest is distributed normally
in the population. The only situation in which we cannot use the confidence interval, then, is when the sample size
is small and the variable of interest is not known to have a normal distribution. In that case, other methods, called
nonparametric methods.
If the population standard deviation σ is unknown, we can replace σ with the sample standard deviation s. The bad
news is that once σ has been replaced by s, we lose the Central Limit Theorem, together with the normality of X̄ ,
and therefore the confidence multipliers z∗ for the different levels of confidence are (generally) not accurate any
more. The new multipliers come from a different distribution called the ”t distribution” and are therefore denoted
by t∗ (instead of z∗).
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The confidence interval for the population proportion p is:

p̂±m

⇒ p̂± z∗ ·
√

p(1− p)
n

We replace p with its sample counterpart p̂, and work with the standard error of p̂, then

⇒ p̂± z∗ ·
√

p̂(1− p̂)
n

From the confidence interval for p, we can get that the margin of error is

Figure 8: Steps to take the point estimation of proportion p.

m = 2

√
p̂(1− p̂)

n

And the the number of samples is

n =
4 p̂(1− p̂)

m2 (7)

But there is a practical problem with this expression that we need to overcome. Practically, you first determine
the sample size, then you choose a random sample of that size, and then use the collected data to find p̂. So the
fact that the expression for determining the sample size depends on p̂ is problematic. The way to overcome the
problem is to take the conservative approach by setting p̂ = 1

2 .
It is conservative because the expression that appears in the numerator, is maximized when p̂ = 1

2 . That way,
the n we get will work in giving us the desired margin of error regardless of what the value of p̂ is. This is a “worst
case scenario” approach. So when we do that we get n = 1

m2 .
For media pools, 0.03 is a very commonly used margin of error. For this reason, most media polls work with

a sample of around 1,100 people.
Say m = .01, the survey has a margin of error of 1%.
One of the most important things to learn with any inference method is the conditions under which it is safe to

use it. It is safe to estimate the sample proportion p̂ under the condition that

n · p̂≥ 10; n · (1− p)≥ 10.

When a null hypothesis (“no effect” or “no difference”) can be rejected at the usual level α = 0.05, there is good
evidence that an effect is present. That effect, however, can be extremely small. When large samples are available,
even tiny deviations from the null hypothesis will be significant. Another important aspect of planning a study is
to verify that the test you plan to use does have high probability of detecting an effect of the size you hope to find.

Statistical significance is an outcome much desired by researchers. It means (or ought to mean) that you have
found an effect that you were looking for. The reasoning behind statistical significance works well if you decide
what effect you are seeking, design an experiment or sample to search for it, and use a test of significance to weigh
the evidence you get. But because a successful search for a new scientific phenomenon often ends with statistical
significance, it is all too tempting to make significance itself the object of the search.
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5.1.2 Some cautions

We should be keenly aware that any formula for inference is correct only in specific circumstances. Several
cautions should be taken when using the formula x̄± z∗σ/

√
n.

• The data should an SRS from the population.

• The formula is not correct for probability sampling designs more complex than an SRS.

• There is no correct method for inference from data haphazardly colelcted with bias of unknown size. Fancy
formulas cnanot rescue badly produced data.

• Because x̄ is not a resistant measure, outliers can have a large effect on the confidence interval. You should
search for outliers and try to correct them or justify their removalbefore computing the interval.

• If the sample size is small and the population is not Normal, the true confidence lvel wil be different from the
value C used in computing the interval. Prior to any calculation, examine your data carefully for skewness
and other signs of non-Noramlity.

• The interval x̄± z∗σ/
√

n assumes the standard deviation σ of the population is known.

Some cautions concerning confidence intervals:

• The margin of error in a confidence interval covers only random sampling erros

• Practical difficulties usch as undercoverage and nonresponse in a sample survey cause addtional errors.

We also need to note these conditions are never fully met in practice. No populaiton is exactly Normal. Deciding
when a statistical procedure should be used in practice often requiers judgment assisted by exploratory analysis
of the data. Mathetical facts are therefore only a part of statstics. The differrence betwween statsitics and mathe-
matics can be stated thusly: mathematicall theorems are true; statistical method are often effective when used with
skill.

There are things that statistical confidence does not say. For example, we can say that, we are 95% confident
that the mean SATM score for the California students lies between 476 and 494. But it does not say that probability
is 0.95 that the true mean falls between 476 and 494. No randomness remains after we draw a particular sampel
and compute the interval.

5.2 Bootstrap
If the population does not appear to be Normal and we have only a small sample, then we do not know what
the sampling distribution of x looks loike. The bootstrap is a procedure for approximating smaplign distribution
when theory cannot tell us their shape. the basic idea is to act as if our sample were the popualtion. We take many
samples from it. Each of these is called resample.

5.3 Hypothesis testing
Statistical hypothesis testing is defined as:
Assessing evidence provided by the data in favor of or against some claim about the population.
There are two types of conclusions:

• “The data provide enough evidence to reject claim 1 and accept claim 2”; or

• “The data do not provide enough evidence to reject claim 1.”

In hypothesis testing, in order to assess the evidence, we need to find how likely is it to get data like those observed
assuming that claim 1 is true.

• Step 1: Stating the claims.
In hypothesis testing, Claim 1 is called the null hypothesis (denoted “H0”), and Claim 2 plays the role of
the alternative hypothesis (denoted “Ha”). The null hypothesis suggests nothing special is going on; in
other words, there is no change from the status quo, no difference from the traditional state of affairs, no
relationship. In contrast, the alternative hypothesis disagrees with this, stating that something is going on,
or there is a change from the status quo, or there is a difference from the traditional state of affairs. The
alternative hypothesis, Ha, usually represents what we want to check or what we suspect is really going on.
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Figure 9: An illustration of big picture of statistics.

• Step 2: Choosing a sample and collecting data.
You look at sampled data in order to draw conclusions about the entire population. In the case of hypothesis
testing, based on the data, you draw conclusions about whether or not there is enough evidence to reject H0.
There is, however, one detail that we would like to add here. In this step we collect data and summarize it.
Go back and look at the second step in our three examples. Note that in order to summarize the data we
used simple sample statistics such as the sample proportion ( p̂), sample mean ( x̄) and the sample standard
deviation (s). In practice, you go a step further and use these sample statistics to summarize the data with
what’s called a test statistic.

• Step 3: Assessing the evidence.
This is the step where we calculate how likely is it to get data like that observed when H0 true. In a sense,
this is the heart of the process, since we draw our conclusions based on this probability. If this probability
is very small, then that means that it would be very surprising to get data like that observed if H0 were true.
The fact that we did observe such data is therefore evidence against H0, and we should reject it. On the other
hand, if this probability is not very small (see example 3) this means that observing data like that observed is
not very surprising if H0 were true, so the fact that we observed such data does not provide evidence against
H0. This crucial probability, therefore, has a special name. It is called the p-value of the test.

The smaller the p-value, the more surprising it is to get data like ours when H0 is true, and therefore, the
stronger the evidence the data provide against H0.

• Step 4: Making conclusions.
Since our conclusion is based on how small the p-value is, or in other words, how surprising our data are
when Ho is true, it would be nice to have some kind of guideline or cutoff that will help determine how
small the p-value must be, or how ”rare” (unlikely) our data must be when H0 is true, for us to conclude that
we have enough evidence to reject H0.

The cutoff is called the significance level of the test and is usually denoted by α. The most commonly used
significance level is α = 0.05 (or 5%). This means that:

– if the p-value < α (usually 0.05), then the data we got is considered to be ”rare (or surprising) enough”
when Ho is true, and we say that the data provide significant evidence against Ho, so we reject Ho and
accept Ha.

– if the p-value > α (usually 0.05), then our data are not considered to be ”surprising enough” when H0
is true, and we say that our data do not provide enough evidence to reject H0 (or, equivalently, that the
data do not provide enough evidence to accept Ha).

Terminology:
“The results are statistically significant” - when the p-value < α.
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“The results are not statistically significant” - when the p-value > α.
Note.

1. The cutoff rate is not the only criterion to decide whether to reject the hypothesis.

2. It is important to draw your conclusions in context. It is never enough to say: “p-value = . . . , and therefore
I have enough evidence to reject Ho at the .05 significance level.”You should always add: “. . . and conclude
that . . . (what it means in the context of the problem)”.

3. There are two types of conclusions:
Either I reject H0 and accept Ha (when the p-value is smaller than the significance level) or I cannot reject
H0 (when the p-value is larger than the significance level). We never conclude that we accept the null
hypothesis, but just that we cannot reject it.

6 Statistical testing
Statistical tests is aka significance tests. The first test is about the population proportion (p). It is widely known
as the z-test for the population proportion (p). When we conduct a test about a population proportion, we are
working with a categorical variable.

6.1 Stating the hypothesis
The value that is specified in the null hypothesis is called the null value, and is generally denoted by p0. In general,
the null hypothesis about the population proportion (p) would take the form:

H0 : p = p0.

p is the unknown population proportion and p0 is the number we think p might be for the given situation.
The alternative hypothesis takes one of the following three forms:

Ha : p < p0(one-sided)

Ha : p > p0(one-sided)

Ha : p 6= p0(two-sided)

The first two possible forms of the alternatives (where the = sign in H0 is challenged by > or <) are called
one-sided alternaties, and the third form of alternative (where the = sign in H0 is challenged by 6=) is called a
two-sided alternative.

6.2 Collecting and Summarizing the Data (Using a Test Statistic)
After the hypotheses have been stated, the next step is to obtain a sample (on which the inference will be based),
collect relevant data, and summarize them. It is extremely important that our sample is representative of the
population about which we want to draw conclusions. This is ensured when the sample is chosen at random.

When we summarize the data in hypothesis testing, we go a step beyond calculating the sample statistic and
summarize the data with a test statistic. Every test has a test statistic, which to some degree captures the essence
of the test. In fact, the p-value is actually determined by (or derived from) the test statistic.

The test statistic is a measure of how far the sample proportion p̂ is from the null value p0, the value that the
null hypothesis claims is the value of p. In other words, since p̂ is what the data estimates p to be, the test statistic
can be viewed as a measure of the “distance” between what the data tells us about p and what the null hypothesis
claims p to be.

We need to standardize the difference p̂− p0 so the comparison between different situations will be possible.
The test statistic for this test measures the difference between the sample proportion p̂ and the null value p0 by the
z-score (standardized score) of the sample proportion p̂, assuming that the null hypothesis is true (i.e. assuming
that p = p0). Therefore, the test statistic is the z-score of p̂ when p = p0, i.e.

z =
p̂− p0√
p0(1−p0)

n

.
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It represents the difference betweeen the sample proportion ( p̂) and the null value (p0), measured in standard
deviations. It is graphically illustrated in the Figure below.

Figure 10: An illustration of test statistics.

Note. “The null distribution of the test statistic is N(0,1).” By “null distribution,” we mean the distribution under
the assumption that H0 is true.

Interpretation: Suppose z = −2, it means (assuming that H0 is true) the sample proportion is 2 standard
deviations below the null value. You can also think about this test statistic as a measure of evidence in the data
against H0. The larger the test statistic, the “further the data are from Ho” and therefore the more evidence the
data provide against H0.

The results of test statistic hold under two conditions:

1. The sample has to be random.

2. The conditions under which the sampling distribution of p̂ is normal are met. In other words:

n · p0 ≥ 10

n · (1− p0)≥ 10

We can reiterate the 4 steps of making a hyporthesis test.

1. State the appropriate null and alternative hypotheses, Ho and Ha.

2. Obtain a random sample, collect relevant data, and check whether the data meet the conditions under which
the test can be used. If the conditions are met, summarize the data using a test statistic.

3. Find the p-value of the test.

4. Based on the p-value, decide whether or not the results are significant and draw your conclusions in context.

6.3 Finding the P-value of the Test
The p-value is the probability of observing a test statistic as extreme as that observed (or even more extreme)
assuming that the null hypothesis is true. By “extreme” we mean extreme in the direction of the alternative
hypothesis.

When the null hypothesis is true (i.e., when p = p0), the possible values of our test statistic (because it is
a z-score) follow a standard normal (N(0,1), denoted by Z) distribution. Therefore, the p-value calculations
(which assume that H0 is true) are simply standard normal distribution calculations for the 3 possible alternative
hypotheses.
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1. Less than
The probability of observing a test statistic as small as that observed or smaller, assuming that the values of
the test statistic follow a standard normal distribution

Ha : p < p0⇒ p−value = P(Z ≤ z).

It is often referred to as a left-tailed test.

2. Greater than
The probability of observing a test statistic as large as that observed or larger, assuming that the values of
the test statistic follow a standard normal distribution.

Ha : p > p0⇒ p−value = P(Z ≥ z).

It is often referred to as a right-tailed test.

3. Not Equal to
The probability of observing a test statistic which is as large as in magnitude as that observed or larger,
assuming that the values of the test statistic follow a standard normal distribution.

Ha : p 6= p0⇒ p−value = P(Z ≤−|z|)+P(Z ≥ |z|) = 2 P(Z ≥ |z|).

This is often referred to as a two-tailed test, since we shaded in both directions.

Before the widespread use of statistical software, it was common to use ’critical values’ instead of p-values
to assess the evidence provided by the data.

6.4 Concepts of the Critical Value Method
The critical value is the value, which cuts off an area referred to as the critical region (or area of rejection), as
applied to the z test. When z test statistics fall in the critical region, they are far enough from the mean that they
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are significantly different from the mean; therefore, in these instances, the null hypothesis would be rejected. The
critical region is determined by a critical value that is based on two things: 1) the significance level of the test
(either 0.05 or 0.01) AND the direction of the test (ex. left-tailed, right-tailed, or two-tailed).

The critical value method uses two concepts: 1) the critical value and 2) the critical region. The critical value
is used to determine the critical region and is based on two things: 1) the significance level of the test (either 0.05
or 0.01) AND the direction of the test (ex, left-tailed, right-tailed, or two-tailed).

When z-test statistic falls in the critical region, it is far enough from the mean that it is significantly different
from the mean. Therefore, in this instance, the null hypothesis would be rejected at the significance level used to
determine the critical region (either 0.05 or 0.01). Furthermore, the actual p-value can be determined by using the
Normal Table.

When the z-test statistic does not fall in the critical region, it indicates that it is not far enough from the mean
to be significantly different from the mean. In this instance, the null hypothesis would not be rejected.

Note. The critical value method has been traditionally used for hypothesis testing. (There are different critical
values and tables for t-tests, ANOVAs, and Chi Square tests). The emphasis now, however, is on the use of exact
p-values, which are obtained through the use of statistical software packages.

In this case, when H0 is true, the values of the test statistic follow a standard normal distribution (i.e., the sam-
pling distribution of the test statistic when the null hypothesis is true is N(0,1)). Therefore, p-values correspond to
areas (probabilities) under the standard normal curve. Similarly, in any test, p-values are found using the sampling
distribution of the test statistic when the null hypothesis is true (also known as the “null distribution” of the test
statistic).

6.5 Drawing Conclusions Based on the P-Value
1. Based on the p-value, determine whether or not the results are significant (i.e., the data present enough

evidence to reject H0).
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2. State your conclusions in the context of the problem.

6.6 Issues about the Hyporthesis Testing
1. The Effect of Sample Size on Hypothesis Testing

Larger sample sizes give us more information to pin down the true nature of the population. We can therefore
expect the sample mean and sample proportion obtained from a larger sample to be closer to the population
mean and proportion, respectively. As a result, for the same level of confidence, we can report a smaller
margin of error, and get a narrower confidence interval.

2. Statistical significance vs. practical importance.

3. One-sided alternative vs. two-sided alternative.
We can summarize and say that in general it is harder to reject H0 against a two-sided Ha because the p-
value is twice as large. Intuitively, a one-sided alternative gives us a head-start, and on top of that we have
the evidence provided by the data. When our alternative is the two-sided test, we get no head-start and all
we have are the data, and therefore it is harder to cross the finish line and reject H0.

4. Hypothesis testing and confidence intervals
Suppose we want to carry out the two-sided test:
H0 : p = p0 and Ha : p 6= p0 using a significance level of 0.05.
An alternative way to perform this test is to find a 95% confidence interval for p and check:

• If falls outside the confidence interval, reject H0.

• If falls inside the confidence interval, do not reject H0.

In other words, if is not one of the plausible values for p, we reject H0.
If is a plausible value for p, we cannot reject H0.
If the results are significant, it might be of interest to follow up the tests with a confidence interval in order
to get insight into the actual value of the parameter of interest.

6.7 Hypothesis Testing for the Population Mean
There are two cases taken into consideration:

• In the first case (σ known), the test is called the z-test for the population mean µ.

• In the second case (σ unknown), the test is called the t-test for the population mean µ.

The reason for the different names (z vs. t) is for exactly the same reason that the test for the proportion (p) is
called a z-test. In the first case, the test statistic will have a standard normal (z) distribution (when H0 is true), and
in the second case, the test statistic will have a t-distribution (when H0 is true).

The parameter of interest is the population mean µ when the variable of interest is quantitative.

6.8 z-test
1. Stating the Hypotheses

The null and alternative hypotheses for the z-test for the population mean (µ) have exactly the same structure
as the hypotheses for z-test for the population proportion (p).

2. Collecting Data and Summarizing Them
The test statistic is the z-score (standardized value) of the sample mean (x̄) assuming that H0 is true (in other
words, assuming that µ = µ0). We refer to results about the sampling distribution of the sample mean (X̄),
and conclude that sample means behave as follows:

• Center: The mean of the sample means is µ, the population mean.

• Spread: The standard deviation of the sample means is σ√
n .
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• Shape: The sample means are normally distributed if the variable is normally distributed in the pop-
ulation or the sample size is large enough to guarantee approximate normality. Recall that this last
statement is the Central Limit Theorem. As a general guideline, we said that if n > 30, the Central
Limit Theorem applies and we can use a normal curve as a probability model.

Based on this description of the sampling distribution of X̄ , we can define a test statistic that measures the
distance between the hypothesized value of µ (denoted µ0) and the sample mean (determined by the data) in
standard deviation units. It is

z =
x̄−µ

σ√
n
.

The Central Limit Theorem gives us criteria for deciding if the z-test for the population mean can be used.
When the distribution is extremely skewed to the right, and has one pretty extreme high outlier, we should

be cautious to proceed with the statistical testing. It is advisable to take more samples.

3. Finding the p-value of the test
The p-value — the probability of getting data (summarized with the test statistic) as extreme as those
observed or even more extreme (in the direction of the alternative hypothesis) when H0 is true — for the
z-test for the population mean is found exactly like the p-value in the z-test for the population proportion.

6.9 t-test

As in the z-test, our test statistic will be the standardized score of assuming that (H0 is true). The difference
here is that we don’t know σ, so we use s instead. The test statistic for the t-test for the population mean is
therefore:

t =
x̄−µ

s√
n
.

while in the z-test we divided by the standard deviation of X̄ , namely σ√
n , here we divide by the standard error

of X̄ , namely s√
n .

6.10 The t Distribution
When the standard deviation of a statistic is estimated fro the data, the result is caleld the standard erro of the
statistic. The standard error of the sample mean is

SEi =
s√
n
.

26



Suppose that an SRS of size n is drawn from an N(µ,σ) population. Then the one-sample t statistic

t =
x̄−µ
s/
√

n

has the t distribution with n− 1 degrees of freedom. The t distribution is any member of a family of continuous
probability distributions that arises when estimating the mean of a normally distributed population when the sam-
ple size is small and population standard deviation is unknown. The t distribution is another bell-shaped (unimodal
and symmetric) distribution, like the normal distribution; and the center of the t distribution is standardized at zero,
like the center of the normal distribution.

The spread in the t distribution is different from the normal distribution. You can see in the picture that the t

distribution has slightly less area near the expected central value than the normal distribution does, and you can
see that the t distribution has correspondingly more area in the “tails” than the normal distribution does. (It is often
said that the t distribution has “fatter tails” or “heavier tails” than the normal distribution.)

This reflects the fact that the t distribution has a larger spread than the normal distribution. Therefore, the
t distribution ends up being the appropriate model in certain cases where there is more variability than would
be predicted by the normal distribution. One of these cases is stock values, which have more variability (or
“volatility,” to use the economic term) than would be predicted by the normal distribution.

There’s actually an entire family of t distributions. The t distributions that are closer to normal are said to have
higher “degrees of freedom”.

6.11 t score
The test statistic in the test for a mean is t = x̄−µ0

s√
n

, which follows a t distribution. s (the standard deviation of the

sample data) varies from sample to sample, and therefore it is another source of variation. So, using s in place of
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the standard deviation of the population σ causes the sampling distribution to be the t distribution because of that
extra source of variation. The t score that arises in the context of a test for a mean is a t score with (n - 1) degrees
of freedom. In the context of a test for the mean, the larger the sample size, the higher the degrees of freedom,
and the closer the t distribution is to a normal z distribution. The effect of the t distribution is most important for
a study with a relatively small sample size. In summary, we have several conclusions about the t distributon.

1. The null distribution of our t-test statistic: t = x̄−µ0
s√
n

, is the t distribution with (n-1) d.f. In other words, when

H0 is true (i.e., when µ = µ0), our test statistic has a t distribution with (n-1) d.f., and this is the distribution
under which we find p-values.

2. For a large sample size (n), the null distribution of the test statistic is approximately Z, so whether we use
t(n - 1) or Z to calculate the p-values should not make a big difference. Here is another practical way to
look at this point. If we have a large n, our sample has more information about the population. Therefore,
we can expect the sample standard deviation s to be close enough to the population standard deviation, σ,
so that for practical purposes we can use s as the known σ, and we’re back to the z-test.

Finding the p-value
The p-value of the t-test is found exactly the same way as it is found for the z-test, except that the t distribution is
used instead of the Z distribution.
Drawing Conclusions
As usual, based on the p-value (and some significance level of choice) we assess the significance of results, and
draw our conclusions in context.
To summarize:
The main difference between the z-test and the t-test for the population mean is that we use the sample standard
deviation s instead of the unknown population standard deviation σ. As a result, the p-values are calculated under
the t distribution instead of under the Z distribution.

6.12 Summary of z-test and t-test
1. In hypothesis testing for the population mean (µ), we distinguish between two cases:

(a) The less common case when the population standard deviation ( σ ) is known.

(b) The more practical case when the population standard deviation is unknown and the sample standard
deviation (s) is used instead.

2. In the case when σ is known, the test for is called the z-test, and in case when is unknown and s is used
instead, the test is called the t-test.

3. In both cases, the null hypothesis is: H0 : µ0 = µ and the alternative, depending on the context, is one of the
following: Ha : µ < µ0, or Ha : µ > µ0, or Ha : µ 6= µ0
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4. Both tests can be safely used as long as the following two conditions are met:

5. The sample is random (or can at least be considered random in context).

6. Either the sample size is large (n > 30) or, if not, the variable of interest can be assumed to vary normally
in the population.

1. In the z-test, the test statistic is: z = X̄−µ0
σ√
n

. whose null distribution is the standard normal distribution (under

which the p-values are calculated).

2. In the t-test, the test statistic is: t = X̄−µ0
s√
n

. whose null distribution is t(n−1) (under which the p-values are

calculated).

3. For large sample sizes, the z-test is a good approximation for the t-test.

4. Confidence intervals can be used to carry out the two-sided test

H0 : µ = µ0 vs.H0 : µ 6= µ0

and in cases where H0 is rejected, the confidence interval can give insight into the value of the population
mean (µ.)

5. Here is a summary of which test to use under which conditions:

In hypothesis testing, the following decisions can occur:

• If the null hypothesis is true and we do not reject it, it is a correct decision.

• If the null hypothesis is false and we reject it, it is a correct decision.

• If the null hypothesis is true, but we reject it. This is a type I error.

• If the null hypothesis is false, but we fail to reject it. This is a type II error.

Type I and type II errors are not caused by mistakes. They are the result of random chance. The data provide
evidence for a conclusion that is false.

The smaller significance level α is, the smaller the probability of a type I error there will be. It is more
complicated to calculate the probability of a type II error. The best way to reduce the probability of a type II error
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is to increase the sample size. But once the sample size is set, larger values of α will decrease the probability of a
type II error while increasing the probability of a type I error.
General guidelines for choosing a level of significance:

• If the consequences of a type I error are more serious, choose a small level of significance (α).

• If the consequences of a type II error are more serious, choose a larger level of significance (α). But
remember that the level of significance is the probability of committing a type I error.

• In general, we choose the largest level of significance that we can tolerate as the chance of making a type I
error.

Note: It is not always the case that one type of error is worse than the other.

7 Inference for Distributions

7.1 Power and Inference as a Decision
The probability that a level α significance test will reject H0 when a particular alternative value of the parameter
is true is called the power of the test to detect that alternative. The power of a significance test measures its
ability to detect an alternative hypothesis. This calculation requires knowledge of the sampling distribution of
the test statistic under the alternative hypothesis. Increasing the size of the sample increase the power when the
signifcance level remains fixed.
We can increase the power in 4 ways:

• Increase α. A 5% test of significance will have a greater chance of rejecting the altenative than a 1% test
because the strength of evidence required for rejection is less.

• Consider a particular alternative that is farther away from µ0. Values of µ that are in Hα but lie close to the
hypothesized value µ0 are harder to detect than values of µ that are far from µ0.

• Increase the sample size. More data will provide more information about x̄ so we have a better chance of
distinguishing values of µ.

• Decrease σ. This has the same effect as increasing the sample size: more information about µ. Improving
the measurement process and restricting attention to a subpopulation are possibel ways to decrease σ.

An alternative to significance testing regards H0 and Ha as two statements of equal status that we must decide
between. This decision theory point of view regards statitical inference in general as giving rules for making
decision in the presence of uncertainty.
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7.2 Two sample statistic test
If we can assume that the two populations have equal varainces, pooled two-sample t procedures can be used.
These are based on the pooled estimator

s2
p =

(n1−1)s2
1 +(n2−1)s2

2
n1 +n2−2

(8)

of the unknown common variance and the t(n1 + n2− 2) distribution. We do not recommend this procedure for
regular use.

Inference procedures for comparing the standard deviations of two Normal populations are based on the F
statistics, which is the ratio of sample variances:

F =
s2

1

s2
2

(9)

If an SRS of size n1 is drawn from the x1 population and an independent SRS of size n2 is drawn from the x2
population, the F statistic has the F distribution, F(n1−1,n2−1) if the two population standard deviations σ1 and
σ2 are in fact equal. The F distribution arises frequently as the null distribution of a test statistic, most notably in
the analysis of variance.

The F test for equality of standard deviations tests H0 : σ1 = σ2 versus Ha : σ 6= σ2 using the statistic

F =
larger s2

smaller s2 . (10)

and doubles the upper-tail probabilty ot obtain the P-value.
The t procedure are quite robust when the distributions are not Normal. The F tests and other procedures for

inference about the spread of one or more Nomral distributions are so strongly affected by non-Normality that we
do not recommend them for regular use.

The power of the pooled two-sample t test is found by first computing the critical value for the significance
test, the degrees of freedom, and the non-centrality parameter for the alternative of interest. These are used to find
the power from the non-central t distribution. A Normal approximation works quite well. Calculating margins of
error for various study designs and assumptions is an alternative procedure for evaluting designs.

8 Inference for relationships
There are three major forms of inference:

• Point estimation—estimating an unknown parameter with a single value that is computed from the sample.

• Interval estimation—estimating an unknown parameter by an interval of plausible values. To each such
interval we attach a level of confidence that indeed the interval captures the value of the unknown parameter
and hence the name confidence intervals.

• Hypothesis testing—a four-step process in which we are assessing evidence provided by the data in favor
or against some claim about the population parameter.

Our goal is to perform inference about relationships between two variables in a population, based on an observed
relationship between variables in a sample. The primary method of investigation is hypothesis testing. We will
test the form of:

• H0 : There is no relationship between X and Y .

• Ha : There is a siginificant relationship between X and Y .
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8.1 Case C→ Q
Within the sub-case of comparing two means (i.e., examining the relationship between X and Y, when X has only
two categories) we will distinguish between two (sub-sub) cases. The distinction is what study design will be
implemented.
Two independent samples
In some cases, one group (sub-population 1) has one categorical value, and another independent group (sub-
population 2) has the other value. Independent samples are then taken from each group for comparison.

Our goal is to test whether the means µ1 and µ2 (which are the means of the variable of interest in the two
sub-populations) are equal or not, and in order to do that we have two samples, one from each sub-population,
which were chosen independently of each other.

We will perform the two-sample t-test.

1. The hypotheses represent our goal, comparing the means: µ1 and µ2.
Null hypothesis: H0 : µ1−µ2 = 0
Alternative hypothesis:
Ha : µ1−µ2 > 0
Ha : µ1−µ2 < 0
Ha : µ1−µ2 6= 0

2. Check Conditions, and Summarize the Data Using a Test Statistic
The two-sample t-test can be safely used as long as the following conditions are met: It is one of the
most used statistical procedures. Unfortunately, due to inadepquate planning, users frequently fail to find
evidence for the effects that they believe to be true. Power calculations should be part of the planning of any
statistical study. Information from a pilot study or previous research is needed.

• The two-sample t-test can be safely used as long as the following conditions are met:
• The two-sample t-test can be safely used when the samples are independent and at least one of the

following two conditions hold:
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– Both populations are normal, or more specifically, the distribution of the response Y in both
populations is normal, and both samples are random (or at least can be considered as such).

– The populations are known or discovered not to be normal, but the sample size of each of the
random samples is large enough (we can use the rule of thumb that > 30 is considered large
enough).

• Finding the p-value

• Conclusion in context
P-values are obtained from the output, and conclusions are drawn as usual, comparing the p-value to
the significance level α.

• Two-Sample t Confidence Interval
A 95% confidence interval which will provide us with a set of plausible values for the difference
between the population means µ1−µ2. In particular, if the test has rejected H0 : µ1−µ2 = 0, a confi-
dence interval for µ1−µ2 can be insightful since it quantifies the effect that the categorical explanatory
variable has on the response. The 95% confidence interval for µ1−µ2 is

(Ȳ1− Ȳ2)± t∗

√
s2

1
n1

+
s2

2
n2

.

The two-sample t-test statistic is:

t =
Ȳ1− Ȳ2√

s2
1

n1
+

s2
2

n2

.

Where Ȳ1, Ȳ2 are the sample means of the samples from population 1 and population 2, respectively.
s1, s2 are the sample standard deviation of the samples from population 1 and population 2, respectively.
n1, n2 are the sample sizes.
Interpretation of the inference µ1−µ2.

• ȳ1 estimates µ1, ȳ2 estimates µ2, and therefore ȳ1− ȳ2 is what the data tells us about µ1−µ2.

• 0 is the “null value” — what the null hypothesis, H0 claims that µ1−µ2 is.

• The denominator s2
1

n1
+

s2
2

n2
is the standard error of ȳ1− ȳ2 .

Therefore, we can see that our test statistic has the structure.

sample estimate - null value
standard error

.

It measures (in standard errors) the difference between what the data tell us about the parameter of
interest (sample estimate) and what the null hypothesis claims the value of the parameter is (null
value).

• The value of the degrees of freedom k is approximated by software or we use the smaller of n1−1 or
n2−1.

Matched pairs
In other cases, a matched pair sample design may be used, where each observation in one sample is matched/paired/linked
with an observation in the other sample. These are sometimes called “dependent samples.” Matching could be
by person (if the same person is measured twice), or could actually be a pair of individuals who belong together
in a relevant way (husband and wife, siblings). In this design, then, the same individual or a matched pair of
individuals is used to make two measurements of the response—one for each of the two categorical values. One
common case is paired by subject.

Note that in the first figure, where the samples are independent, the sample sizes of the two independent sam-
ples need not be the same (and thus we used n1 and n2 to indicate the two sample sizes). On the other hand, it is
obvious from the design that in the matched pairs the sample sizes of the two samples must be the same (and thus
we used n for both). The samples are dependent.
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1. Stating the hypotheses.
The nul hypothesis is always

H0 : µd = 0.

And the alternative is one of:
Ha : µd < 0.(One-sided)

Ha : µd > 0.(One-sided)

Ha : µd 6= 0.(Two-sided)

depending on the context.

2. Checking Conditions and Calculating the Test Statistic
The paired t-test, as a special case of a one-sample t-test, can be safely used as long as:

• The sample of differences is random (or at least can be considered so in context).

• We are in one of the three situations marked with a green check mark in the following table. The
data should not display any departure from the normality assumption in the form of extreme skewness
and/or outliers.

Assuming that the we can safely use the paired t-test, the data are summarized by a test statistic:

t =
x̄d−0

sd√
n

,

where x̄d is the sample mean of the differences, and sd is the sample standard deviation of the differences. It
measures (in standard errors) how far our data are (represented by the average of the differences) from the
null hypothesis (represented by the null value, 0).

3. Finding the p-value
As a special case of the one-sample t-test, the null distribution of the paired t-test statistic is a t distribution
(with n - 1 degrees of freedom), which is the distribution under which the p-values are calculated.

4. Conclusion in Context
We draw our conclusion based on the p-value. If the p-value is small, there is a significant difference
between what was observed in the sample and what was claimed in H0, so we reject H0 and conclude that
the categorical explanatory variable does affect the quantitative response variable as specified in Ha. If
the p-value is not small, we do not have enough statistical evidence to reject H0. In particular, if a cutoff
probability, α (significance level), is specified, we reject H0 if the p-value is less than α. Otherwise, we do
not reject H0.

5. Paired t Confidence Interval
If H0 is rejected, a 95% confidence interval for µd can be very insightful and can also be used for the
two-sided test.
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Comparing More Than Two Means—ANOVA
We make inferences about the relationship between the explanatory (X) and the response (Y) variables amounts to
comparing the means of the response variable in the populations defined by the values of the explanatory variable,
where the number of means we are comparing depends on the number of values of X. Unlike the two-valued case,
where we looked at two sub-cases (1) when the samples are independent (two samples design) and (2) when the
samples are dependent (matched pairs design, here, we are just going to discuss the case where the samples are
independent.

The inferential method for comparing more than two means from independent samples is called Analysis Of
Variance (abbreviated as ANOVA), and the test associated with this method is called the ANOVA F-test. The
extension of the matched pairs design to more than two dependent samples is called “Repeated Measures”

1. Stating the Hypotheses
We discuss about ANOVA in the following:
The null hypothesis claims that there is no relationship between X and Y. The null hypothesis of the F-test is:

H0 : µ1 = µ2 = · · ·= µk.

Alternative hypothesis claims that there is a relationship between X and Y. In terms of the means , it simply
says the opposite of the alternative, that not all the means are equal, and we simply write:

Ha : not all the µ’s are equal.

The idea behind the ANOVA F-Test
The question we want to ask from the F-Test is: Are the differences among the sample means (Ȳ ’s) due to
true differences among the µ’s (alternative hypothesis), or merely due to sampling variability (null hypoth-
esis)?

We check the quantity:
Variation among sample means

Variation within groups

2. Checking Conditions and Finding the Test Statistic
The sample is chosen at random, so the samples are independent. If the sample sizes are quite low, then we
need to check whether the boxplots display any extreme violation of the normality assumption in the form
of extreme skewness or outliers. We can assume that the equal population standard deviation condition is
met, since the rule of thumb is satisfied (max std / min std is less than 2).

The “F-test” part comes from the fact that the null distribution of the test statistic, under which the p-values
are calculated, is called an F-distribution.
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It is fairly straightforward to decide if a z-statistic is large. Even without tables, we should realize by now
that a z-statistic of 0.8 is not especially large, whereas a z-statistic of 2.5 is large. In the case of the t-statistic,
it is less straightforward, because there is a different t-distribution for every sample size n (and degrees of
freedom n - 1). However, the fact that a t-distribution with a large number of degrees of freedom is very
close to the Z (standard normal) distribution can help to assess the magnitude of the t-test statistic.

When the size of the F-statistic must be assessed, the task is even more complicated, because there is a dif-
ferent F-distribution for every combination of the number of groups we are comparing and the total sample
size. We will nevertheless say that for most situations, an F-statistic greater than 4 would be considered
rather large, but tables or software are needed to get a truly accurate assessment.

3. Finding the p-value
The p-value of the ANOVA F-test is the probability of getting an F statistic as large as we got (or even
larger), had H0 : µ1 = µ2 = · · ·= µk been true. In other words, it tells us how surprising it is to find data like
those observed, assuming that there is no difference among the population means µ1,µ2, . . . ,µk.

4. Making Conclusions in Context

5. If the ANOVA F-test has rejected the null hypothesis we can look at the confidence intervals for the popu-
lation means that are in the output to get a visual insight into why H0 was rejected (i.e., which of the means
differ).

8.2 Case C→C

We aim to assess whether the relationship between X and Y that we observed in the data is due to a real relationship
between X and Y in the population or if it is something that could have happened just by chance due to sampling
variability.

The statistical test is called the χ2 test for independence.

1. Stating the hypotheses
H0: There is no relationship between the two categorical variables. (They are independent.)
Ha: There is a relationship between the two categorical variables. (They are not independent.)
The idea behind the χ2 test is to measure how far the data are from what is claimed in the null hypothesis.
We will have two sets of counts:

• the observed counts (the data)

• the expected counts (if Ho were true)

We will measure how far the observed counts are from the expected ones. In other words, we will base our
decision on the size of the discrepancy between what we observed and what we would expect to observe if
H0 were true. Based on the rule that, if events A and B are independent, then P(A,B) = P(A) ·P(B).
The expected count from the table is:

Expect Count =
Column Total ·Row Total

Table Total

2. Checking the Conditions and Calculating the Test Statistic
The single number that summarizes the overall difference between observed and expected counts is the
chi-square statistic χ2, which tells us in a standardized way how far what we observed (data) is from what
would be expected if H0 were true.

χ
2 = ∑

all cells

(Observed Count−Expected Count)2

Expected Count

The reason we divide each square difference by the expected counts is so that the null distribution of χ2 will
have a known null distribution (under which p-values can be easily calculated).

3. Conditions under Which the Chi-Square Test Can Safely Be Used

• The sample should be random.
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• In general, the larger the sample, the more accurate and reliable the test results are. There are different
versions of what the conditions are that will ensure reliable use of the test, all of which involve the
expected counts. One version of the conditions says that all expected counts need to be greater than 1,
and at least 80% of expected counts need to be greater than 5. A more conservative version requires
that all expected counts are larger than 5.

• Finding the p-value
The p-value for the chi-square test for independence is the probability of getting counts. Technically,
the p-value is the probability of observing at least as large as the one observed.

• Stating the conclusion in context
If a significance level of 0.05 is used, we will reject Ho if the p-value is less than 0.05.

8.3 Case Q→ Q

Finding the least squares regression line actually belongs to the inference unit, and while it is true that it is the
line that best fits (in some sense) the observed data, it is really an estimate of the true linear relationship that exists
in the population.

1. Making hypothesis H0: There is no linear relationship between X and Y. Ha: There is a linear relationship
between X and Y.

2. Hypothesis testing (t-test) and the conditions to perform the test.

• the observed data indeed look linear (otherwise it would not make sense to try and generalize them)

• the observations are independent

• there are no extreme outliers in the data
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• the sample size is fairly large

3. Find a test statistic value and p-value.
The test assesses the strength of evidence provided by the data (as seen in the scatterplot and measured by
the correlation r) and reports a p-value. The p-value is the probability of getting data such as that observed
assuming that, in reality, no linear relationship exists between X and Y in the population.

4. Make a conclusion.
Based on the p-value, we draw our conclusions. A small p-value will indicate that we reject H0 and conclude
that the data provide enough evidence of a real linear relationship between X and Y in the population.

9 Inference for Regression

9.1 Linear Regression
The statistical model for simple linear regression assumes that the means of the response variable y fall on a line
when plotted against x, with the observed y’s varing Normally about these means. For n observations, this model
can be written

yi = β0 +β1xi + εi, (11)

where i = 1,2, . . . ,n, and the εi are assumed to be independent and Normally distributed with mean 0 and standard
deviation σ. Here β0 +β1xi is the mean response when x = xi. The parameters of the model are β0, β1 and σ.

The population regression line intercept and slope, β0 and β1, are estimated by the intercept and slope of the
least-squares regression line, b0 and b1. The parameter σ is estimated by

s =

√
∑e2

i
n−2

,

where the ei are the residuals
ei = yi− ŷi.

Prior to inference, always examine the residuals for Normality, constant variance, and any other remaining patterns
in the data. Plots of the residuals both against the case number and against the explanatory variable are usually
done as part of this examination.
Confidence interval and significance test for the regression slope
A level C confidence interval fo the slope β1 is

b1± t∗SEb1 .

In this expression t∗ is the value for the t(n−2) density curve with area C between −t∗ and t∗.
To test the hypothesis H0 : β1 = 0, compute the test statistic

t =
b1

SEb1

(12)

The degress of freedom are n−2. In terms of a random variable T having the t(n−2) distribution, the P-value for
a test of H0 against The test of the hypothesis H0 : β1 = 0 is based on the t statistic
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t =
b1

SEb
,

and the t(n− 2) distribution. This tests whether there is a straight-line relationship between y and x. There are
similar formulas for confidence intervals and tests for β0, but these are meaningful only in special cases.

The estimated mean response for the subpopulation corresponding to the value x∗ of the explantory variable is

µ̂y = b0 +b1x∗

Confidence interval for a mean response
A level C confidence interval for the mean response µy when x takes the value x∗ is

µ̂y± t∗SEµ̂ (13)

where t∗ is the value for the t(n−2) density curve with area C between −t∗ and t∗.
The estimated value of the response variable y for a future observation from the subpopulation corresponding

to the value x∗ of the explantory variable is
ŷ = b0 +b1x∗

A level C prediction interval for the estimated response is

ŷ± t∗SEŷ, (14)

where t∗ is the value for the t(n− 2) density curve with area C between −t∗ and t∗. The standard error for the
prediction interval is larger than that for the confidence interval because it also includes the variabilty of the future
observation around its subpopulation mean.

Sometimes a transformation of one or both of the variables can make their relationship linear. However, these
transformations can harm the assumptions of Normality and constant variance, so it is important to examine the
residuals.

Sums of squares represent variation present in the responses. They are calculated by summing squared devi-
ations. Analysis of variance partitions the total variation between two sources
The sums of squares are related by the formula

∑(yi− ȳ)2 = ∑(ŷi− ȳ)2 +∑(yi− ŷi)
2 (15)

SST = SSM+SSE (16)

That is, the total variation is partitioned into two parts, one due to the model and one due to deviations from the
model. The SS in each abbreviation stands for sum of squares, and the T, M, and E stand for total, model and
error, respectively.
If H0 : β1 = 0 were true, there would be no subpopulations and all of the y’s should be viewed as coming from a
single population with mean µy. The variation of the y’s would then be described by the sample varaince

s2
y =

∑(yi− ȳ)2

n−1
.

The numerator in this expression in SST. The denominator is the total degrees of freedom, or simply DFT.
Degrees of freedom are associated with each sum of squares. They are related in the same way:

DFT = DFM+DFE

That is the total degress of freedom DFT is the sum of the degrees of freedom for the model and for the error.
To caculate mean squares, use the following

MS =
sum of squares

degrees of freedom
(17)

s2 =
∑(yi− ŷi)

2

n−2
(18)

It is our estimate of σ2, the variance about the population regression line.
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9.2 Facts about least-squares regression
Least square is the most common method for fitting a regression line to data. We have data on explanatory variable
x and a response variable y for n samples. The means and standard deviations of the sample data are x̄ and sx for x
and ȳ and sy for y, and the correlation between x and y is r. The equation of the least-squares regression line of y
on x is

ŷ = b0 +b1x

with slope
b1 = r

sy

sx

and intercept
b0 = ȳ−b1x̄

There are several facts about least-squares regression lines.

1. There is a close connection between correlation and the slope of the least-squares line. The slope is

b1 = r
sy

sx

It indicates that along the regression line, a change of one standard deviation in x corresponds to a change
of r standard deviations in y.

2. The least-squares regression line always passes through the point (x̄, ȳ) on the graph of y against x.

3. The distinction between explanatory and response variable is essential in regression.

Correlation and regression are closely connected. The square of the correlation r2 is the fraction of the variation
in the values of y that is explained by the least-squares regression of y on x. When you report a regression, give r2

as a measure of how successfully the regression explains the response. We also have an alternative expression as

r2 =
SSM
SST

The null hypothesis H0 : β1 = 0 that is not linearly related to X can be tested by comparing MSM with MSE. The
ANOVA test statistic is an F statistic.

F =
MSM
MSE

.

The P-value is the probability that a random variable having the F(1,n−2) distribution is greater than or equal to
the calculated value of the F statistic. The standard error of the slope b1 of the least-square regression line is

SEb1 =
s√

∑(xi− x̄)2
.

The standard error of the intercept b0 is

SEb0 = s

√
1
n
+

x̄2

∑(xi− x̄)2 .

The standard error of µ̂ is

SEµ̂ = s

√
1
n
+

(x∗− x̄)2

∑(xi− x̄)2 .

The standard error for predicting an individual response ŷ is

SEŷ = s

√
1+

1
n
+

(x∗− x̄)2

∑(xi− x̄)2 .

To test the hypothesis H0 : ρ = 0, compute the t statistic

t =
r
√

n−2
1− r2

In terms of a random variable T having the t(n−2) distribution, the P-value for a test of H0 against
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