RDD

Resilient Distributed Dataset

Python

Element-wise multiplication and dot product
u = arange(0, 5, .5)

v = arange(5, 10, .5)

u*v

dot(u,v)

Dense Vector in Spark

myDenseVector = DenseVector([3,4,5])

Calculate the dot product between the two vectors.
denseDotProduct = numpyVector.dot(numpyVector2)

Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x: x*5).filter(lambda x: x % 2==0).reduce(lambda X, y: x+y)

pluralLengths = (pluralRDD.map(lambda x: len(x))
.collect())

Linear regression and distributed machine learning

Distributed logistic regression

w = (XAT X)M-1} XA Ty

Computation: O(nd*2+d"3) operations

Storage: O(nd+d”2) floats

Other methods including cholesky, QR, SVD have the same complexity

Distribute Computation
trainData.map(computeOuterProduct).reduce(sumAndinvert)
Basically distribute the n summation, and aggregate afterwards

Distribute Storation
Storing X and computing X’ X are bottlenecks. Now, storing and operating on X’ X is also a

bottleneck. It can't be easily distributed!

1st Rule of Thumb
Computation and storage should be linear (in n,d)

Idea 1: Exploit sparsity

- Explicit sparsity can provide orders of magnitude storage and computational gains
- Latent sparsity assumption can be used to reduce dimension, e.g. PCA, low-rank
approximation.

Idea 2: Use different algorithms
Gradient descent is an iterative algorithm that requires O(nd) computation and O(d) local
storage per iteration

Gradient descent
Start at a random point
Repeat
Determine a descent direction
Choose a step size
Update
Until stopping criterion is satisfied
n

Vector Update: wiy =w;i—a; Y (w; x¥) —y)x¥

j=1
Compute summands in parallel!
note: workers must all have w;
3 WOrkers: —x(— i;xr.a'j; —x2— O(nd) Distributed
5 | e | xi6— Storage
| J l
Wit map: (w! x — 0 {W.'.: x — yDyald (] xV) —) Digiggi?[ed Oé)f[grléozal
\ l / i Computation 9
- reduce: 3 (W %9 — Yy O(d) Local O(d) Local
= Computation Storage

Least Squares, Ridge Regression and Logistic Regression are all convex!
We can move anywhere in R*d Negative gradient is direction of steepest descent!

Parallel gradient descent for least squares

for i in range(numlters):
alpha_i = alpha/ (n * sqrt(i+1))
gradient = train.map(lambda Ip: gradientSummand(w, Ip)).sum()
w -= alpha_i * gradient

return w

Pros:

- Easily parallelized

- Cheap at each iteration

- Stochastic variants can make things even cheaper
Cons:

- Slow convergence especially compared with closed-form
- Requires communication across nodes

Communication hierarchy

CPU: clock speed not changing, but number of cores growing with Moore's Law
RAM: Capacity growing with Moore's law

Disk: Capacity growing exponentially, but not speed

Top-of-rack
Network Switeh
——
10Gbps
(1 GB/s)

10Gbps J 3Gbps

Nodes in
same rack

Nodes in
other racks

e £ i §

CPU Local disks

Different
Racks

2nd Rule of Thumb
Perform parallel and in-memory computation

Persisting in memory reduces communication
- Especially for iterative computation
Scale-up (Powerful multi-core machine)

- No network communication

- Expensive hardware, eventually hit a wall
Scale-out (distributed, e.g. cloud-based)

- Need to deal with network communication
- Commodity hardware, scales to massive problems
- train.cache() # Persist training data across iterations

3rd Rule of Thumb
Minimize network communication

First observation: We need to store and potentially communicate Data, model and intermediate
objects
Solution: Keep large objects local

Example:

Linear regression, big n and big d

- Gradient descent, communicate w_i

- O(d) communication OK for fairly large d
- Compute locally on data (Data Parallel)

Hyperparameter tuning for ridge regression with small n and small d

- Data is small, so can communicate it

- Model is collection of regression models corresponding to different hyperparameters
- Train each model locally (Model Parallel)

Linear regression, big n and huge d

- Gradient descent

- O(d) communication slow with hundreds of millions parameters
- Distribute data and model (Data and Model Parallel)

- Often rely on sparsity to reduce communication

Second observation: ML methods are typically iterative
Solution: Reduce number of iterations

Distributed iterative algorithms must compute and communicate
- In Bulk Synchronous Parallel (BSP) systems, e.g. Apache Spark, we strictly alternate between
the two

Distributed Computing Properties
- Parallelism makes computation fast
- Network makes communication slow

Idea: Design algorithm that compute more, communicate less
- Do more computation at each iteration
- Reduce total number of iterations

Extreme: Divide-and-conquer

- Fully process each partition locally, communicate final result

- Single iteration; minimal communication

- Approximate results

w = train.mapPartitions(localLinearRegression).reduce(combineLocalRegressionResults)

Less extreme: Mini-batch
- Do more work locally than gradient descent before communication
- Exact solution, but diminishing returns with larger batch size
for i in range(fewerlters):
update =
train.mapPartitions(doSomeLocalGradientUpdates).reduce(combinelLocalUpdates)
w += update

Throughput: How many bytes per second can be read
Latency: Cost to send message (independent of size)

We can amortize latency

- Send larger messages

- Batch their communication

- E.g. Train multiple models together

Latency

Memory
Hard Disk
Network (same datacenter)

Network (US to Europe)

Note. Root mean squared error (RMSE) is typically used as it provides a measure that has the
same units as the target variable.

MLlIib and Pipelines
Common learning algorithms and utilities
- Classification, Regression, Clustering, Collaborative filtering, Dimensionality Reduction

Pipeline

‘ Transformer - Transformer |—I- Estimator

Pipeline
‘ Binarizer —VectorAssembler ‘—rlLinea.rRegressian
Pipeline
StandardScaler —-| LinearRegression

Ea;” i... Pipeline ‘—p PipelineModel
ata

PipelineModel

StandardScalerModel ‘—Ir LinearReg rESSiDr‘IMDdE|‘

:‘ fransform | .. .
EE::EI PipelineMode! |=p| Predictions

Two packages
spark.mllib, spark.ml

Transformer
A Transformer is a class which can transform one DataFrame into another DataFrame
E.g. HashingTF, LogisticRegressionModel, Binarizer

Estimator
An Estimator is a class which can take a DataFrame and produce a Transformer

E.g. LogisticRegression, StandardScaler, Pipeline

Some notes on Spark codes
sc.range(1, 7, 2).collect()
[1, 3, 5]

Logistic Regression and Click-through Rate Prediction

Efficient ads matching
Idea: Predict probability that user will click each ad and choose ads to maximize probability
- Estimate P(click|predictive features)

Predictive features

- Ad's historical performance

- Advertiser and ad content info

- Publisher info

- User info (e.g. search/click history)

Publishers get billions of impressions per day
Data is high-dimensional, sparse, and skewed

- Hundreds of millions of online users

- Millions of unique publisher pages to display ads
- Millions of unique ads to display

- Very few ads get clicked by users

Massive datasets are crucial to tease out signal
Goal: Estimate P(click|user,ad,publisher info)
Given: Massive amounts of labeled data

Classification

Goal: learn a mapping from observations to discrete labels given a set of training examples
(supervised learning)

Example: Click-through Rate Prediction

- Observations are user-ad-publisher triples

- Labels are {not-click, click}

- Given a set of labeled observations, we want to predict whether a new user-ad-publisher triple
will result in a click

Evaluating predictions

- Regression: can measure 'closeness' between labels and prediction
- classification: class predictions are discrete

0-1 loss: Penalty is 0 for correct prediction, and 1 otherwise

How can we learn model (w)?

Assume we have n training points, where x*i denotes the ith point
Idea: Find w that minimize average 0-1 loss over training points:
\min_w\sum_{i=1}*n \ell_{0/1}(y_i \cdot w™top x"i)

We use 0-1 loss: \ell_{0/1}(z)

The original 0/1 loss minimization is hard optimization, not convex
Approximate 0/1 loss
SVM(hinge), logistic regression (logistic), adaboost (exponential)

Logistic
Reg!\ession Adaboost
‘a\ E(Z)
SVM
Solution: Approximate 0/1
loss with convex loss
o (“surrogate” loss)

z=y-w'x

Solution: approximate 0/1 loss with convex loss
Logistic loss (logloss): /,,,(z) = log(1 +e™)

Goal: Find w* that minimizes
fw) = lezog(yi -wlxf)

Can solve visa Gradient Descent
Update rule: w,,, =w, —aVf(w)
\sum_{j=1}"n [1- \frac{1}{1+H\exp(-y*i w_iM"top x"j)}] (-y"i xMi)

Logistic Regression: Learn mapping (w) that minimize logistic loss on training data
miny, Y. L, 0O - wTx0)
=1

- Convex
- Closed form solution doesn't exist
- Can add regularization term as in ridge regression

Logistic regression: Probabilistic interpretation

Goal: Model conditional probability: P(y=1|x)

Example: Predict click from ad's historical performance, user's click frequency, and publisher
page's relevance

P[y=click | h= GOOD, f = HIGH, r = HIGH] = .1]

P[y=click | h= BAD, f = LOW, r = HIGH] = .05]

Logistic regression uses logistic function to model this conditional probability
- P(y=1]x) = \sigma(w"\top x)
- P(y=0|x) = 1 - \sigma(w”\top x)

Training Logloss Mode| Complexity
n
min E o/ (y(') : WTX(*)) + Al|w||5
w
i=1

Decision boundary: wMtop x =0
- P(y=1|x) = \sigma(w"\top x) > .5 => \hat{y} = 1

Categorical Data and one-hot-encoding

Data is assumed to be numerical

One idea: Create single numerical feature to represent non-numeric one
Creating single numerical feature introduces relationships between categories that don't other
otherwise exist

One-hot-encoding: Creating dummy features does not introduce spurious relationships

Feature hashing
Problem: Number of dummy features equals number of categories => high dimensionality

Feature hashing

- Use hashing principles to reduce feature dimension

- Obviates need to compute expensive OHE dictionary
- Preserves sparsity

- Theoretical underpinning

Hash function: Maps an object to one of m buckets
- Should be efficient and distribute objects across buckets

Reasonable
Hash feature have nice theoretical properties
- Good approximations of inner products of OHE features under certain conditions

- Many learning methods (including linear/logistic regression) can be viewed solely in terms of
inner products
- Good empirical performance

Distributed computation

trainHash = train.map(applyHashFunction)

Step 1: Apply hash function on raw data

- Local computation and hash function are usually fast
- No need to compute OHE features or communication

Step 2: Store hashed features in sparse representation
- Local computation
- Saves storage and speeds up computation

Distributed PCA

Brain
~50,000 neurons per cubic millimeter

Computing PCA solution
Given: n x d matrix of uncentered raw data
Goal: compute k << d dimensional representation

PCA steps

Step 1: Center Data

Step 2: Compute covariance or scatter matrix
-l xx

Step 3: Eigendecomposition

Step 4: compute PCA Scores

PCA at scale

Case 1: Bign and small d

- O(d*2) local storage, O(d"3) local computation, O(dk) communication
- Similar strategy as closed-form linear regression

Step 1: Center Data

- Compte d feature means, m\in RAd
- communicate m to all workers

- Subtract m from each data point

workers: 2
1 O(nd) Distributed Storage

! ! l
map: BE --m EE —m EXi= — m O(d) Local Computation

Step 2: Compute covariance or scatter matrix

- Compute matrix product via outer products

Step 3: Eigendecomposition

- Perform locally since d is small

- Communicate k principal components (P \in R*{dxk}) to workers

workers:
- - - O(nd) Distributed Storage
H
map: - - O(d2) Local Storage
O(nd?) Distributed Computation
. 3 O(d?) Local Storage
reduce: ei gh(Z I)] O(d?) Local Computation

O(dk) Communication

Step 4: Compute PCA scores
- Multiply each point by principal components, P

workers:
- - - i O(nd) Distributed Storage
1
} | |
map: - I - l - I § O(dk) Local Computation

Case 2: Big n and big d
- O(d) local storage and computation on workers, O(dk) communication
- lterative algorithm

Step 1: Center Data
Rely on a sequence of matrix-vector products to compute top k eigenvectors (P)
- Krylov subspace or random random projection methods

Krylov subspace methods iteratively compute X™top Xv for some v\in R*d provided by the
method
- Requires O(k) passes over data, O(d) local storage on workers

- No need to compute the covariance matrix

Step 2: Compute covariance or scatter matrix
Ix"xvs X'x

Repeat for O(k) iterations:

1. Communicate v, € R’ to all workers

2. Compute ¢, =XTXv,. in a distributed fashion
- Step 1: b, = Xv,

- Step 2: ¢, = X"b,

- Perform in single map-reduce

3. Drive uses ¢; to update estimate of P
bijv,.Txf : each component is dot product

n
- g, is a sum of rescaled data points, i.e. ¢; = 3 b,.jxf'
1

Compute g_i = XMtop X v_i in a distributed fashion

— Ty - '
- b;=v;"¥ and qi—zlbijxf
=

- Locally compute each dot product and rescale each point before summing all rescaled points

in reduced step

workers: —x(1)— —x(3)— X
—x(5)— — x4 — — x(6)—
l | l | l i
. Iil .
map b,‘,‘ X % b,‘,‘ X J?j br}' X _3\?;
1]
reduce: qi = Z bij X ?ﬁ
Code:

g = trainData.map(rescaleByBi).reduce(sumVectors)
Step 3: Eigendecomposition
Step 4: compute PCA Scores

#

O(nd) Distributed Storage

O(d) Local Storage
O(nd) Distributed Computation

O(d) Local Storage
O(d) Local Computation
O(d) Communication

