
RDD 
Resilient Distributed Dataset 
 
Python 
Element-wise multiplication and dot product 
u = arange(0, 5, .5) 
v = arange(5, 10, .5) 
u*v 
dot(u,v) 
 
Dense Vector in Spark 
myDenseVector = DenseVector([3,4,5]) 
# Calculate the dot product between the two vectors. 
denseDotProduct = numpyVector.dot(numpyVector2) 
 
# Multiply the elements in dataset by five, keep just the even values, and sum those values 
finalSum = dataset.map(lambda x: x*5).filter(lambda x: x % 2==0).reduce(lambda x, y: x+y) 
 
pluralLengths = (pluralRDD.map(lambda x: len(x)) 
 .collect()) 
 

Linear regression and distributed machine learning 
Distributed logistic regression 
w = (X^T X)^{-1} X^T y 
Computation: O(nd^2+d^3) operations 
Storage: O(nd+d^2) floats 
Other methods including cholesky, QR, SVD have the same complexity 
 
Distribute Computation 
trainData.map(computeOuterProduct).reduce(sumAndInvert) 
Basically distribute the n summation, and aggregate afterwards 
 
Distribute Storation 
Storing X and computing  are bottlenecks. Now, storing and operating on  is also aXXT XXT  
bottleneck. It can't be easily distributed! 
 
1st Rule of Thumb 
Computation and storage should be linear (in n,d) 
 



Idea 1: Exploit sparsity 
- Explicit sparsity can provide orders of magnitude storage and computational gains 
- Latent sparsity assumption can be used to reduce dimension, e.g. PCA, low-rank 
approximation. 
 
Idea 2: Use different algorithms 
Gradient descent is an iterative algorithm that requires O(nd) computation and O(d) local 
storage per iteration 
 
Gradient descent 
Start at a random point 
Repeat 

Determine a descent direction 
Choose a step size 
Update 

Until stopping criterion is satisfied 

 

 
Least Squares, Ridge Regression and Logistic Regression are all convex! 
 
We can move anywhere in R^d Negative gradient is direction of steepest descent! 
 
Parallel gradient descent for least squares 
for i in range(numIters): 

alpha_i = alpha / (n * sqrt(i+1)) 
gradient = train.map(lambda lp: gradientSummand(w, lp)).sum() 
w -= alpha_i * gradient 

return w 
 
Pros: 



- Easily parallelized 
- Cheap at each iteration 
- Stochastic variants can make things even cheaper 
Cons: 
- Slow convergence especially compared with closed-form 
- Requires communication across nodes 
 
Communication hierarchy 
CPU: clock speed not changing, but number of cores growing with Moore's Law 
RAM: Capacity growing with Moore's law 
Disk: Capacity growing exponentially, but not speed 

 

 
2nd Rule of Thumb 
Perform parallel and in-memory computation 
 
Persisting in memory reduces communication 
- Especially for iterative computation 
Scale-up (Powerful multi-core machine) 
- No network communication 
- Expensive hardware, eventually hit a wall 
Scale-out (distributed, e.g. cloud-based) 



- Need to deal with network communication 
- Commodity hardware, scales to massive problems 
- train.cache() # Persist training data across iterations 
 
3rd Rule of Thumb 
Minimize network communication 
 
First observation: We need to store and potentially communicate Data, model and intermediate 
objects 
Solution: Keep large objects local 
 
Example: 
Linear regression, big n and big d 
- Gradient descent, communicate w_i 
- O(d) communication OK for fairly large d 
- Compute locally on data (Data Parallel) 
 
Hyperparameter tuning for ridge regression with small n and small d 
- Data is small, so can communicate it 
- Model is collection of regression models corresponding to different hyperparameters 
- Train each model locally (Model Parallel) 
 
Linear regression, big n and huge d 
- Gradient descent 
- O(d) communication slow with hundreds of millions parameters 
- Distribute data and model (Data and Model Parallel) 
- Often rely on sparsity to reduce communication 
 
Second observation: ML methods are typically iterative 
Solution: Reduce number of iterations 
 
Distributed iterative algorithms must compute and communicate 
- In Bulk Synchronous Parallel (BSP) systems, e.g. Apache Spark, we strictly alternate between 
the two 
 
Distributed Computing Properties 
- Parallelism makes computation fast 
- Network makes communication slow 
 
Idea: Design algorithm that compute more, communicate less 
- Do more computation at each iteration 
- Reduce total number of iterations 
 



Extreme: Divide-and-conquer 
- Fully process each partition locally, communicate final result 
- Single iteration; minimal communication 
- Approximate results 
w = train.mapPartitions(localLinearRegression).reduce(combineLocalRegressionResults) 
 
Less extreme: Mini-batch 
- Do more work locally than gradient descent before communication 
- Exact solution, but diminishing returns with larger batch size 
for i in range(fewerIters): 

update = 
train.mapPartitions(doSomeLocalGradientUpdates).reduce(combineLocalUpdates) 

w += update 
 
Throughput: How many bytes per second can be read 
Latency: Cost to send message (independent of size) 
 
We can amortize latency 
- Send larger messages 
- Batch their communication 
- E.g. Train multiple models together 

 
Note. Root mean squared error (RMSE) is typically used as it provides a measure that has the 
same units as the target variable. 
 
MLlib and Pipelines 
Common learning algorithms and utilities 
- Classification, Regression, Clustering, Collaborative filtering, Dimensionality Reduction 



 

 
Two packages 
spark.mllib, spark.ml 
 
Transformer 
A Transformer is a class which can transform one DataFrame into another DataFrame 
E.g. HashingTF, LogisticRegressionModel, Binarizer 
 
Estimator 
An Estimator is a class which can take a DataFrame and produce a Transformer 



E.g. LogisticRegression, StandardScaler, Pipeline 
 
Some notes on Spark codes 
sc.range(1, 7, 2).collect() 
[1, 3, 5] 
 

Logistic Regression and Click-through Rate Prediction 
Efficient ads matching 
Idea: Predict probability that user will click each ad and choose ads to maximize probability 
- Estimate P(click|predictive features) 
 
Predictive features 
- Ad's historical performance 
- Advertiser and ad content info 
- Publisher info 
- User info (e.g. search/click history) 
 
Publishers get billions of impressions per day 
Data is high-dimensional, sparse, and skewed 
- Hundreds of millions of online users 
- Millions of unique publisher pages to display ads 
- Millions of unique ads to display 
- Very few ads get clicked by users 
 
Massive datasets are crucial to tease out signal 
Goal: Estimate P(click|user,ad,publisher info) 
Given: Massive amounts of labeled data 
 
Classification 
Goal: learn a mapping from observations to discrete labels given a set of training examples 
(supervised learning) 
Example: Click-through Rate Prediction 
- Observations are user-ad-publisher triples 
- Labels are {not-click, click} 
- Given a set of labeled observations, we want to predict whether a new user-ad-publisher triple 
will result in a click 
 
Evaluating predictions 
- Regression: can measure 'closeness' between labels and prediction 
- classification: class predictions are discrete 
0-1 loss: Penalty is 0 for correct prediction, and 1 otherwise 



 
How can we learn model (w)? 
Assume we have n training points, where x^i denotes the ith point 
Idea: Find w that minimize average 0-1 loss over training points: 
\min_w\sum_{i=1}^n \ell_{0/1}(y_i \cdot w^\top x^i) 
We use 0-1 loss: \ell_{0/1}(z) 
 
The original 0/1 loss minimization is hard optimization, not convex 
Approximate 0/1 loss 
SVM(hinge), logistic regression (logistic), adaboost (exponential) 

 
 
Solution: approximate 0/1 loss with convex loss 
 
Logistic loss (logloss): (z) og(1 )llog = l + e−z  
 
Goal: Find  that minimizesw*  

(w) (y x )f = ∑
n

i=1
llog i · wT i  

Can solve visa Gradient Descent 
Update rule: ∇f (w)wi+1 = wi − α  
\sum_{j=1}^n [1- \frac{1}{1+\exp(-y^i w_i^\top x^j)}] (-y^i x^i) 
 
Logistic Regression: Learn mapping (w) that minimize logistic loss on training data 

in (y x )m w ∑
n

i=1
llog (i) · wT (i)  

- Convex 
- Closed form solution doesn't exist 
- Can add regularization term as in ridge regression 
 
Logistic regression: Probabilistic interpretation 



Goal: Model conditional probability: P(y=1|x) 
Example: Predict click from ad's historical performance, user's click frequency, and publisher 
page's relevance 
P[y=click | h= GOOD, f = HIGH, r = HIGH] = .1] 
P[y=click | h= BAD, f = LOW, r = HIGH] = .05] 
 
Logistic regression uses logistic function to model this conditional probability 
- P(y=1|x) = \sigma(w^\top x) 
- P(y=0|x) = 1 - \sigma(w^\top x) 

 
Decision boundary: w^\top x = 0 
- P(y=1|x) = \sigma(w^\top x) > .5 => \hat{y} = 1 
 

Categorical Data and one-hot-encoding 
Data is assumed to be numerical 
 
One idea: Create single numerical feature to represent non-numeric one 
Creating single numerical feature introduces relationships between categories that don't other 
otherwise exist 
 
One-hot-encoding: Creating dummy features does not introduce spurious relationships 
 
Feature hashing 
Problem: Number of dummy features equals number of categories => high dimensionality 
 
Feature hashing 
- Use hashing principles to reduce feature dimension 
- Obviates need to compute expensive OHE dictionary 
- Preserves sparsity 
- Theoretical underpinning 
 
Hash function: Maps an object to one of m buckets 
- Should be efficient and distribute objects across buckets 
 
Reasonable 
Hash feature have nice theoretical properties 
- Good approximations of inner products of OHE features under certain conditions 



- Many learning methods (including linear/logistic regression) can be viewed solely in terms of 
inner products 
- Good empirical performance 
 
Distributed computation 
trainHash = train.map(applyHashFunction) 
Step 1: Apply hash function on raw data 
- Local computation and hash function are usually fast 
- No need to compute OHE features or communication 
 
Step 2: Store hashed features in sparse representation 
- Local computation 
- Saves storage and speeds up computation 
 
 

Distributed PCA 
Brain 
~50,000 neurons per cubic millimeter 
 
Computing PCA solution 
Given: n x d matrix of uncentered raw data 
Goal: compute k << d dimensional representation 
 
PCA steps 
Step 1: Center Data 
Step 2: Compute covariance or scatter matrix 
- (X X) X Xn

1 T −1 T  
Step 3: Eigendecomposition 
Step 4: compute PCA Scores 
 
PCA at scale 
Case 1: Big n and small d 
- O(d^2) local storage, O(d^3) local computation, O(dk) communication 
- Similar strategy as closed-form linear regression 
 
Step 1: Center Data 
- Compte d feature means, m\in R^d 
- communicate m to all workers 
- Subtract m from each data point 



 
Step 2: Compute covariance or scatter matrix 
- Compute matrix product via outer products 
Step 3: Eigendecomposition 
- Perform locally since d is small 
- Communicate k principal components (P \in R^{dxk}) to workers 

 
Step 4: Compute PCA scores 
- Multiply each point by principal components, P 

 
Case 2: Big n and big d 
- O(d) local storage and computation on workers, O(dk) communication 
- Iterative algorithm 
 
Step 1: Center Data 
Rely on a sequence of matrix-vector products to compute top k eigenvectors (P) 
- Krylov subspace or random random projection methods 
 
Krylov subspace methods iteratively compute X^\top Xv for some v\in R^d provided by the 
method 
- Requires O(k) passes over data, O(d) local storage on workers 



- No need to compute the covariance matrix 
 
Step 2: Compute covariance or scatter matrix 

- vs X Xn
1 T XXT  

 
 
Repeat for O(k) iterations: 
1. Communicate  to all workersvi ∈ Rd  
2. Compute   in a distributed fashionXvqi = XT

i  
- Step 1: vbi = X i  
- Step 2: bqi = XT

i  
- Perform in single map-reduce 
 
3. Drive uses  to update estimate of Pqi  

: each component is dot productv xbij i
T j  

-  is a sum of rescaled data points, i.e. qi xqi = ∑
n

j=1
bij j  

 
Compute q_i = X^\top X v_i in a distributed fashion 

-  and xbij = viT j xqi = ∑
n

j=1
bij j   

- Locally compute each dot product and rescale each point before summing all rescaled points 
in reduced step 

 
Code: 
q = trainData.map(rescaleByBi).reduce(sumVectors) 
Step 3: Eigendecomposition 
Step 4: compute PCA Scores 
 


