
RDD
Resilient Distributed Dataset

Python
Element-wise multiplication and dot product
u = arange(0, 5, .5)
v = arange(5, 10, .5)
u*v
dot(u,v)

Dense Vector in Spark
myDenseVector = DenseVector([3,4,5])
Calculate the dot product between the two vectors.
denseDotProduct = numpyVector.dot(numpyVector2)

Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x: x*5).filter(lambda x: x % 2==0).reduce(lambda x, y: x+y)

pluralLengths = (pluralRDD.map(lambda x: len(x))
 .collect())

Linear regression and distributed machine learning
Distributed logistic regression
w = (X^T X)^{-1} X^T y
Computation: O(nd^2+d^3) operations
Storage: O(nd+d^2) floats
Other methods including cholesky, QR, SVD have the same complexity

Distribute Computation
trainData.map(computeOuterProduct).reduce(sumAndInvert)
Basically distribute the n summation, and aggregate afterwards

Distribute Storation
Storing X and computing are bottlenecks. Now, storing and operating on is also aXXT XXT
bottleneck. It can't be easily distributed!

1st Rule of Thumb
Computation and storage should be linear (in n,d)

Idea 1: Exploit sparsity
- Explicit sparsity can provide orders of magnitude storage and computational gains
- Latent sparsity assumption can be used to reduce dimension, e.g. PCA, low-rank
approximation.

Idea 2: Use different algorithms
Gradient descent is an iterative algorithm that requires O(nd) computation and O(d) local
storage per iteration

Gradient descent
Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Least Squares, Ridge Regression and Logistic Regression are all convex!

We can move anywhere in R^d Negative gradient is direction of steepest descent!

Parallel gradient descent for least squares
for i in range(numIters):

alpha_i = alpha / (n * sqrt(i+1))
gradient = train.map(lambda lp: gradientSummand(w, lp)).sum()
w -= alpha_i * gradient

return w

Pros:

- Easily parallelized
- Cheap at each iteration
- Stochastic variants can make things even cheaper
Cons:
- Slow convergence especially compared with closed-form
- Requires communication across nodes

Communication hierarchy
CPU: clock speed not changing, but number of cores growing with Moore's Law
RAM: Capacity growing with Moore's law
Disk: Capacity growing exponentially, but not speed

2nd Rule of Thumb
Perform parallel and in-memory computation

Persisting in memory reduces communication
- Especially for iterative computation
Scale-up (Powerful multi-core machine)
- No network communication
- Expensive hardware, eventually hit a wall
Scale-out (distributed, e.g. cloud-based)

- Need to deal with network communication
- Commodity hardware, scales to massive problems
- train.cache() # Persist training data across iterations

3rd Rule of Thumb
Minimize network communication

First observation: We need to store and potentially communicate Data, model and intermediate
objects
Solution: Keep large objects local

Example:
Linear regression, big n and big d
- Gradient descent, communicate w_i
- O(d) communication OK for fairly large d
- Compute locally on data (Data Parallel)

Hyperparameter tuning for ridge regression with small n and small d
- Data is small, so can communicate it
- Model is collection of regression models corresponding to different hyperparameters
- Train each model locally (Model Parallel)

Linear regression, big n and huge d
- Gradient descent
- O(d) communication slow with hundreds of millions parameters
- Distribute data and model (Data and Model Parallel)
- Often rely on sparsity to reduce communication

Second observation: ML methods are typically iterative
Solution: Reduce number of iterations

Distributed iterative algorithms must compute and communicate
- In Bulk Synchronous Parallel (BSP) systems, e.g. Apache Spark, we strictly alternate between
the two

Distributed Computing Properties
- Parallelism makes computation fast
- Network makes communication slow

Idea: Design algorithm that compute more, communicate less
- Do more computation at each iteration
- Reduce total number of iterations

Extreme: Divide-and-conquer
- Fully process each partition locally, communicate final result
- Single iteration; minimal communication
- Approximate results
w = train.mapPartitions(localLinearRegression).reduce(combineLocalRegressionResults)

Less extreme: Mini-batch
- Do more work locally than gradient descent before communication
- Exact solution, but diminishing returns with larger batch size
for i in range(fewerIters):

update =
train.mapPartitions(doSomeLocalGradientUpdates).reduce(combineLocalUpdates)

w += update

Throughput: How many bytes per second can be read
Latency: Cost to send message (independent of size)

We can amortize latency
- Send larger messages
- Batch their communication
- E.g. Train multiple models together

Note. Root mean squared error (RMSE) is typically used as it provides a measure that has the
same units as the target variable.

MLlib and Pipelines
Common learning algorithms and utilities
- Classification, Regression, Clustering, Collaborative filtering, Dimensionality Reduction

Two packages
spark.mllib, spark.ml

Transformer
A Transformer is a class which can transform one DataFrame into another DataFrame
E.g. HashingTF, LogisticRegressionModel, Binarizer

Estimator
An Estimator is a class which can take a DataFrame and produce a Transformer

E.g. LogisticRegression, StandardScaler, Pipeline

Some notes on Spark codes
sc.range(1, 7, 2).collect()
[1, 3, 5]

Logistic Regression and Click-through Rate Prediction
Efficient ads matching
Idea: Predict probability that user will click each ad and choose ads to maximize probability
- Estimate P(click|predictive features)

Predictive features
- Ad's historical performance
- Advertiser and ad content info
- Publisher info
- User info (e.g. search/click history)

Publishers get billions of impressions per day
Data is high-dimensional, sparse, and skewed
- Hundreds of millions of online users
- Millions of unique publisher pages to display ads
- Millions of unique ads to display
- Very few ads get clicked by users

Massive datasets are crucial to tease out signal
Goal: Estimate P(click|user,ad,publisher info)
Given: Massive amounts of labeled data

Classification
Goal: learn a mapping from observations to discrete labels given a set of training examples
(supervised learning)
Example: Click-through Rate Prediction
- Observations are user-ad-publisher triples
- Labels are {not-click, click}
- Given a set of labeled observations, we want to predict whether a new user-ad-publisher triple
will result in a click

Evaluating predictions
- Regression: can measure 'closeness' between labels and prediction
- classification: class predictions are discrete
0-1 loss: Penalty is 0 for correct prediction, and 1 otherwise

How can we learn model (w)?
Assume we have n training points, where x^i denotes the ith point
Idea: Find w that minimize average 0-1 loss over training points:
\min_w\sum_{i=1}^n \ell_{0/1}(y_i \cdot w^\top x^i)
We use 0-1 loss: \ell_{0/1}(z)

The original 0/1 loss minimization is hard optimization, not convex
Approximate 0/1 loss
SVM(hinge), logistic regression (logistic), adaboost (exponential)

Solution: approximate 0/1 loss with convex loss

Logistic loss (logloss): (z) og(1)llog = l + e−z

Goal: Find that minimizesw*

(w) (y x)f = ∑
n

i=1
llog i · wT i

Can solve visa Gradient Descent
Update rule: ∇f (w)wi+1 = wi − α
\sum_{j=1}^n [1- \frac{1}{1+\exp(-y^i w_i^\top x^j)}] (-y^i x^i)

Logistic Regression: Learn mapping (w) that minimize logistic loss on training data

in (y x)m w ∑
n

i=1
llog (i) · wT (i)

- Convex
- Closed form solution doesn't exist
- Can add regularization term as in ridge regression

Logistic regression: Probabilistic interpretation

Goal: Model conditional probability: P(y=1|x)
Example: Predict click from ad's historical performance, user's click frequency, and publisher
page's relevance
P[y=click | h= GOOD, f = HIGH, r = HIGH] = .1]
P[y=click | h= BAD, f = LOW, r = HIGH] = .05]

Logistic regression uses logistic function to model this conditional probability
- P(y=1|x) = \sigma(w^\top x)
- P(y=0|x) = 1 - \sigma(w^\top x)

Decision boundary: w^\top x = 0
- P(y=1|x) = \sigma(w^\top x) > .5 => \hat{y} = 1

Categorical Data and one-hot-encoding
Data is assumed to be numerical

One idea: Create single numerical feature to represent non-numeric one
Creating single numerical feature introduces relationships between categories that don't other
otherwise exist

One-hot-encoding: Creating dummy features does not introduce spurious relationships

Feature hashing
Problem: Number of dummy features equals number of categories => high dimensionality

Feature hashing
- Use hashing principles to reduce feature dimension
- Obviates need to compute expensive OHE dictionary
- Preserves sparsity
- Theoretical underpinning

Hash function: Maps an object to one of m buckets
- Should be efficient and distribute objects across buckets

Reasonable
Hash feature have nice theoretical properties
- Good approximations of inner products of OHE features under certain conditions

- Many learning methods (including linear/logistic regression) can be viewed solely in terms of
inner products
- Good empirical performance

Distributed computation
trainHash = train.map(applyHashFunction)
Step 1: Apply hash function on raw data
- Local computation and hash function are usually fast
- No need to compute OHE features or communication

Step 2: Store hashed features in sparse representation
- Local computation
- Saves storage and speeds up computation

Distributed PCA
Brain
~50,000 neurons per cubic millimeter

Computing PCA solution
Given: n x d matrix of uncentered raw data
Goal: compute k << d dimensional representation

PCA steps
Step 1: Center Data
Step 2: Compute covariance or scatter matrix
- (X X) X Xn

1 T −1 T
Step 3: Eigendecomposition
Step 4: compute PCA Scores

PCA at scale
Case 1: Big n and small d
- O(d^2) local storage, O(d^3) local computation, O(dk) communication
- Similar strategy as closed-form linear regression

Step 1: Center Data
- Compte d feature means, m\in R^d
- communicate m to all workers
- Subtract m from each data point

Step 2: Compute covariance or scatter matrix
- Compute matrix product via outer products
Step 3: Eigendecomposition
- Perform locally since d is small
- Communicate k principal components (P \in R^{dxk}) to workers

Step 4: Compute PCA scores
- Multiply each point by principal components, P

Case 2: Big n and big d
- O(d) local storage and computation on workers, O(dk) communication
- Iterative algorithm

Step 1: Center Data
Rely on a sequence of matrix-vector products to compute top k eigenvectors (P)
- Krylov subspace or random random projection methods

Krylov subspace methods iteratively compute X^\top Xv for some v\in R^d provided by the
method
- Requires O(k) passes over data, O(d) local storage on workers

- No need to compute the covariance matrix

Step 2: Compute covariance or scatter matrix

- vs X Xn
1 T XXT

Repeat for O(k) iterations:
1. Communicate to all workersvi ∈ Rd
2. Compute in a distributed fashionXvqi = XT

i
- Step 1: vbi = X i
- Step 2: bqi = XT

i
- Perform in single map-reduce

3. Drive uses to update estimate of Pqi

: each component is dot productv xbij i
T j

- is a sum of rescaled data points, i.e. qi xqi = ∑
n

j=1
bij j

Compute q_i = X^\top X v_i in a distributed fashion

- and xbij = viT j xqi = ∑
n

j=1
bij j

- Locally compute each dot product and rescale each point before summing all rescaled points
in reduced step

Code:
q = trainData.map(rescaleByBi).reduce(sumVectors)
Step 3: Eigendecomposition
Step 4: compute PCA Scores

